SCANIA STEELS & POWERS LIMITED

FORMERLY KNOWN AS
SIDHI VINAYAK SPONGE IRON PVT. LTD.

Office: R-19, Civil Township, Rourkela - 769 004 (Odisha)

Ph.: 0661-2400784, 2401791(O), Fax: 06C1-2400007

DATE: 22nd June, 2023

Inspector General of Forests

Ministry of Environment, Forest and Climate Change, Integrated Regional Office, Aranya Bhawan, North Block, Sector-19, Naya Raipur, Atal Nagar, Chhattisgarh - 492002

Subject: Six Monthly Compliance Report for the period of October, 2022 to March, 2023 for expansion of integrated steel plant & captive power plant at village Punjipatra, District Raigarh, Chhattisgarh by M/s. Scania Steels and Powers Limited

Ref.: MoEF&CC File No. J-I1011/1267/2007-IA.II(I) dt. 7th August, 2018

Dear Sir,

With reference to the above mentioned Environmental Clearance letter (File No. J-11011/1267/2007-IA II (I)) dated 7th August, 2018, we do hereby submit six monthly Compliance Report for the period of October, 2022 to March, 2023 for expansion of integrated steel plant & captive power plant at village Punjipatra, District Raigarh in Chhattisgarh.

Thanking you,

Yours faithfully, for Scania Steels and Powers Limited

SCANIA STEELS & POWERS LIMITED

Sanjay Gadodia Director

Encl.: as above.

Web Site: scaniasteels.com, E-mail: rourkela@scaniasteels.com

STATUS OF ENVIRONMENTAL CLEARANCE CONDITIONS FOR EXPANSION OF INTEGRATED STEEL PLANT & CAPTIVE POWER PLANT AT VILLAGE PUNJIPATRA, DISTRICT RAIGARH, CHHATTISGARH BY M/S. SCANIA STEELS AND POWERS LIMITED

Ref.: MOEF&CC File No. J-11011/1267/2007-IA.II(I) dt. 7th August, 2018

At present, 4x100 TPD Sponge Iron Plant is in operation. 1x8T + 1x6T Induction Furnaces have been commissioned, but they are presently not in operation.

SL. NO.	CONDITIONS	STATUS AS ON 22.06.2023
A.	SPECIFIC CONDITION	
1)	The EC is subject to the outcome of Civil Appeal No. 6025 of 2012 before Hon'ble Supreme Court of India.	Sub judice.
2)	The particulate matter emission from all the process stacks shall not be more than 30 mg/Nm³.	The particulate matter emission from the process stacks have been reduced to 30 mg/Nm³. An amount of around Rs. 33.52 lacs have been spent to modify the existing pollution control system to contain the PM emission within 30 mg/Nm³. Monthly stack emission monitoring reports for six months have been attached as Annexure-1 . Complied.
3)	The project proponent shall take adequate measures to bring the Ambient Air Quality as per National Ambient Air Quality Standards issued by the Ministry vide G.S.R. No. 826(E) dated 16 th November, 2009.	The particulate matter emission from all the process stacks have been reduced to 30 mg/Nm³ by modifying the control equipment. Ambient Air Quality monitoring is being carried out at 4 relevant locations near the plant. The monitored data of Ambient Air Quality for six months have been attached as Annexure-3.
4)	The monitoring of the secondary fugitive emissions will be carried around Product House, SMS and RMH guard as per the frequency specified under the National Ambient Air Quality Standards issued by the Ministry vide G.S.R. No. 826(E) dated 16th November, 2009.	Fugitive emission monitoring is being carried out at 3 relevant locations inside the plant. The monitored data of Fugitive emission for six months have been attached as Annexure-5 . Complied.
B.	GENERAL CONDITION	
1)	An amount of Rs 225 Lakhs proposed towards Corporate Environment Responsibility (CER) shall be utilized as capital expenditure in project mode. The project shall be completed in concurrence with the implementation of the expansion	Being complied.

	and estimated on the basis of Scheduled Rates.	
2)	Green belt shall be developed in 7.85 Ha equal to 33% of the plant area with a native tree species in accordance with CPCB guidelines. The greenbelt shall inter alia cover the entire periphery of the plant.	Within the existing plant area, greenbelt is present significantly. Out of the total plant area of 23.472 hectares (58 acres), the area covered under plantation is 7.85 hectares (19.4 acres). Hence, over 33% of the total plant area is under plantation. Around 19500 plants/ trees are existing in the plant area.
		Complied.
3)	The Capital cost Rs. 7.2 Crores and annual recurring cost Rs. 72 Lakhs towards the environmental protection measures shall be earmarked separately. The funds so provided shall not be diverted for any other purpose.	Being complied.
4)	The project proponent shall (Air Quality	
a.	install 24x7 continuous emission monitoring system at process stacks to monitor stack emission with respect to standards prescribed in Environment (Protection) Rules 1986 (G.S.R 414 (E) dated 30th May 2008 as amended from time to time; S.O. 3305 (E) dated 7th December 2015 (Thermal Power Plants) as amended from time to time) and connected to SPCB and CPCB online servers and calibrate these system from time to time according to equipment supplier specification through labs recognized under Environment (Protection) Act, 1986 or NABL accredited laboratories.	Continuous stack emission monitoring system has been installed for the existing stacks, which is connected to the CPCB/CECB online servers. Monthly continuous stack emission monitoring data for six months have been attached as Annexure-2.
b.	monitor fugitive emissions in the plant premises at least once in every quarter through laboratories recognized under Environment (Protection) Act, 1986 or NABL accredited laboratories.	Fugitive emission monitoring is being carried out at 3 relevant locations inside the plant. The monitored data of Fugitive emissions for six months have been attached as Annexure-5. Complied.
c.	install system carryout Continuous Ambient Air Quality monitoring for common/criterion parameters relevant to the main pollutants released (e.g. PM ₁₀ and PM _{2.5} in reference to PM emission, and SO ₂ and NOx in reference to SO ₂ and NOx emissions) within and outside the plant area (at least at four locations one within and three outside the plant area at an angle of 120° each), covering upwind and	Continuous ambient air quality monitoring system has been installed for the air quality parameters of PM ₁₀ , PM _{2.5} , SO ₂ and NO _X .

	downwind directions; and	Complied.
d.	submit monthly summary report of continuous stack emission and air quality monitoring and results of manual stack monitoring and manual monitoring of air quality / fugitive emissions to Regional Office of MoEF&CC, Zonal office of CPCB and Regional Office of SPCB along with six-monthly monitoring report.	Monthly summary report of continuous stack emission has been attached as Annexure-2. The same for continuous air quality monitoring is also enclosed as Annexure-4. Results of manual stack monitoring and manual monitoring of air quality / fugitive emissions for six months are attached as Annexure-1, Annexures-3 and Annexure-5 respectively. Complied.
5)	The project proponent shall (Water Quality	Complied.
a)	install 24x7 continuous effluent monitoring system with respect to standards prescribed in Environment (Protection) Rules 1986 (G.S.R 414 (E) dated 30 th May 2008; S.O. 3305 (E) dated 7 th December 2015 (Thermal Power Plants) as amended from time to time and connected to SPCB and CPCB online servers and calibrate these systems from time to time according to equipment supplier specification through labs recognized under Environment (Protection) Act, 1986 or NABL accredited laboratories.	The plant has been designed as a zero discharge plant as far as the process effluents are concerned. The water is recirculated through cooling and treatment. No plant effluent is discharged outside the plant premises. The entire waste water is recycled for various purposes e.g., dust suppression & greenery purpose inside the plant. Domestic effluent from the various buildings / sheds of the plant is conveyed to the septic tank / soak pit. The company will install Sewage Treatment Plant (STP) in future. The analysis report of Cooling Discharge Water for the samples, taken for six months has been attached as Annexure-6.
		Complied.
b)	monitor regularly ground water quality at least twice a year (pre and post monsoon) at sufficient numbers of piezometers/sampling wells in the plant and adjacent areas through labs recognized under Environment (Protection) Act, 1986 and NABL accredited laboratories; and	The analysis report for six months of the ground water quality for the sample, taken from the borewell-2 inside the plant has been attached as Annexure-7 . Complied.
c)	submit monthly summary report of continuous effluent monitoring and results of manual effluent testing and manual monitoring of ground water quality to Regional Office of MoEF&CC, Zonal office of CPCB and Regional Office of SPCB along with six-monthly monitoring report.	The plant has been designed as a zero discharge plant as far as the process effluents are concerned. The water is recirculated through cooling and treatment. No plant effluent is discharged outside the plant premises. The entire waste water is recycled for various

		purposes e.g., dust greenery purpose inside Domestic effluent from buildings/sheds of the to the septic tank/ soak will install Sewage Treating future. The analysis report of Water for the sample months is attached as A The analysis report for ground water quality taken from the borewell is attached as Annexure	the plant. om the various plant is conveyed pit. The company tment Plant (STP) Cooling Discharge is, taken for six innexure-6. six months of the for the sample, -2 inside the plant
		Complied.	
6)	The project proponent shall (Air Pollution Control):		
a)	provide appropriate Air Pollution Control (APC) system for all the dust generating points including fugitive dust from all vulnerable sources, so as to comply prescribed stack emission and fugitive emission standards.	Appropriate Air Pollution have been installed at points to contain the within the prescribed details are given in the follution Sources Sponge Iron Plant: Dust from the process Unloading of Raw Material Raw Material Handling area Cooler Discharge & Product Separation Area Steel Melting Shop: Fumes from Furnaces (IF / LRF) Complied.	all the relevant dust emissions standards. The
b)	provide leakage detection and mechanized bag cleaning facilities for better maintenance of bags;	Available. Complied.	

c)	provide pollution control system in the steel	SN	Unit / Item	Responsibilities	Extent of fulfillment
	plant as per the CREP Guidelines of CPCB;	1.	DRI	Utilisation of dolochar & waste gas	Waste gas shall be used in the WHR Boiler. Dolochar is used for power generation by the power generation
		2	SMS	To reduce fugitive emission by installing a secondary de-dusting system	Secondary de-dusting facility envisaged to reduce the fugitive emission.
		3.	SMS	Utilisation of SMS Slag	100% utilization will be explored.
		4.	Water conservatio n/ pollution	Reduce specific water consumption to 5 m³/t for long products and 8 m³/t for flat products.	The statutory norms are being complied to.
		5.	Stack & AAQ	Installation of Continuous stack monitoring system & its calibration in major stacks and setting up of the online ambient air quality monitoring stations.	Complied.
		6.	APCS	To operate the pollution control equipment efficiently and to keep proper record of run hours, failure time and efficiency with immediate effect.	Being complied.
		Con	nnlied		
d)	provide sufficient number of mobile or stationery vacuum cleaners to clean plant roads, shop floors, roofs regularly;	Prov	aplied. vided. aplied.		
e)	recycle and reuse iron ore fines, coal and coke fines, lime fines and such other fines collected in the pollution control devices and vacuum cleaning devices in the process after briquetting/ agglomeration;		ng followed		
f)	ensure covered transportation and conveying of ore, coal and other raw material to prevent spillage and dust generation;	Raw Dolo mat con bins	material material mite, etc erial yard veyed to the	ls like Iron . are stored l from wher ne stock house g into ground yors.	in the raw e they are kept in day

		Complied.
	manda mind abotton Community 1	Provided.
g)	provide wind shelter fence and chemical spraying on the raw material stock piles.	Complied.
7)	The project proponent shall (Water Pollution Control):	
a)	adhere to 'zero liquid discharge';	The plant has been designed as a zero discharge plant as far as the process effluents are concerned. The water is re-circulated through cooling and treatment. No plant effluent is discharged outside the plant premises. The entire waste water is recycled for various purposes e.g., dust suppression & greenery purpose inside the plant.
		Domestic effluent from the various buildings / sheds of the plant is conveyed to the septic tank / soak pit system. The company will install Sewage Treatment Plant (STP) in future.
b)	provide Sewage Treatment Plant for domestic wastewater; and	Complied. Domestic effluent from the various buildings / sheds of the plant is conveyed to the septic tank/ soak pit system. The company will install Sewage Treatment Plant (STP) in future.
		Complied.
c)	provide garland drains and collection pits for each stock pile to arrest the run-off in the event of heavy rains and to check the water pollution due to surface run off.	Under Process
8)	The project proponent shall (Water Conservation):	
2)	practice rainwater harvesting to maximum	The company has constructed Ground water recharge structures (Ponds & pits with shaft) as guided by the CGWB officials having capacity of more than 65,493 m³/year, for augmenting the ground water resources of the area, as per issued Renewal of NOC.
a)	possible extent; and	The company has 58 acres land and rainwater is being recharged through 2 de-silting chambers & ponds with filter media and shaft. 2 nos. roof water harvesting have been constructed with filter media pit along with shaft.
		Pond with 1 no. recharge shaft :- (50.3+44.3)*(33.5+27.3)*6.1 m ³ ,

		Recharge shaft 40 m with filter media 4M*2M*2M Provided with proper drainage system. Roof Top Rain Water Harvesting structure (De-siltation + Filter pit with recharge
		shaft):- 2 Numbers:
		 Area of admin building 15M x 8M and water goes to pond in front of office pond dimension of 10 X 12 X 8 M³, without recharge shaft Roof top dimension of Stock shed 6M X 20M with recharge pit dimension 3 x 2.5 x 2 m³ with 40 m shaft.
		Further, the company has proposed to construct the rain water harvesting pond with filter media and shaft as per guideline of CGWA – New Delhi (if required).
		Complied. All efforts have been made to minimise the
b)	make efforts to minimize water consumption in the steel plant complex by segregation of used water, practicing cascade use and by recycling treated water.	use of fresh water by recycling the entire effluent water.
	The project proponent shall (Energy	Complied.
9)	Conservation):	
a)	provide waste heat recovery system on the DRI Kilns;	Action has been taken to install Waste Heat Recovery Boiler to utilize the waste heat, generated from DRI kilns (4 Nos.) in steam generation which in-turn can generate 8 MW power.
		Being complied.
b)	provide solar power generation on roof tops of buildings, for solar light system for all common areas, street lights, parking around project area and maintain the same	Shall be provided.
c)	regularly; and provide the project proponent for LED	Being complied. LED lights have been provided in the plant
	lights in their offices and residential areas;	office and the residential areas.
		Complied.
10)	Used refractories shall be recycled as far as possible.	Shall be complied.
	The project proponent shall prepare GHG	Within the existing plant area, greenbelt is
11)	emissions inventory for the plant and shall submit the programme for reduction of the same including carbon sequestration including plantation.	present significantly. Out of the total plant area of 23.472 hectares (58 acres), the area covered under plantation is 7.85 hectares (19.4 acres). Hence, over 33% of

		T
		the total plant area is under plantation. Around 19500 plants/ trees are existing in the plant area. Hence, GHG (CO ₂ & CO) effect has been controlled by plantation. Further, GHG emissions inventory for the plant will be prepared.
12)	Emergency preparedness plan based on the Hazard identification and Risk Assessment (HIRA) and Disaster Management Plan shall be implemented.	Emergency preparedness plan is already in place. Complied.
	onan be implemented.	Induction Furnaces are not in operation.
13)	The project proponent shall carry out heat stress analysis for the workmen who work in high temperature work zone and provide Personal Protection Equipment (PPE) as per the norms of Factor	Only Sponge Iron Plant is in operation. The report will be submitted once all the units are in operation. All workers have been provided with Personal Protection Equipment (PPE).
14)	The project proponent shall adhere to the corporate environmental policy and system of the reporting of any infringements/non-compliance of EC conditions at least once in a year to the Board of Directors and the copy of the board resolution shall be submitted to the MoEF&CC as a part of sixmonthly report.	The company adheres to its corporate environmental policy. The copy of the board resolution shall be submitted later on. Complied.
15)	All the recommendations made in the Charter on Corporate Responsibility for Environment Protection (CREP) for the steel plants shall be implemented.	Already mentioned against Sl. No. 6(C) Complied.
16)	A dedicated environmental cell with qualified personnel shall be established. The head of the environment cell shall report directly to the head of the organization.	Complied.
17)	Provision shall be made for the housing of construction labour within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP, Safe drinking water, medical health care, creche etc. The housing may be in the form of temporary structures to be removed after the completion of the project.	Being complied.
18)	The project authorities must strictly adhere to the stipulations made by the State Pollution Control Board and the State Government.	Agreed.
19)	No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment, Forests and Climate Change (MoEF&CC).	Agreed
20)	The waste oil, grease and other hazardous waste shall be disposed of as per the	Used oils removed from machinery, gear boxes, compressors etc. are collected in

	Hazardous & Other waste (Management & Transboundary Movement) Rules, 2016.	drums and temporarily stored in specifically earmarked areas. They are disposed through the approved agencies. The company has already been granted authorization under the Hazardous and the Other Wastes (Management & Transboundary Movement Rules), 2016 by Chhattisgarh Environment Conservation Board (CECB), which is attached as Annexure-10 .
		Complied.
21)	The ambient noise levels should conform to the standards prescribed under EPA Rules, 1989 viz. 75 dB(A) during day time and 70 dB(A) during night time.	Monitoring of noise level has been conducted and the results are well within prescribed limits. Noise Level Monitoring results for six months have been attached as Annexure-8 .
		Complied.
22)	Occupational health surveillance of the workers shall be done on a regular basis and records maintained as per the Factories Act.	Complied.
23)	The project proponent shall also comply with all the environmental protection measures and safeguards recommended in the EIA/EMP report.	Being complied.
24)	The project proponent shall (Post-EC monitoring):	
a.	send a copy of environmental clearance letter to the heads of Local Bodies, Panchayat, Municipal bodies and relevant offices of the Government;	The copy of the Environmental Clearance for the project has already been sent to the respective offices as per the instruction. Complied.
b.	put on the clearance letter on the web site	Being Complied.
	of the company for access to the public. inform the public through advertisement	Already done.
c.	within seven days from the date of issue of the clearance letter, at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the SPCB and may also be seen at Website of the Ministry of Environment, Forests and Climate Change (MoEF&CC) at http://envfor.nic.in.	The copy of the advertisement in two local newspapers has been attached as Annexure-9.
u.	upload the status of compliance of the stipulated environment clearance conditions, including results of monitored data on their website and update the same	Agreed and being complied.

	periodically;	
e.	monitor the criteria pollutants level	Being complied.
Ę.	namely; PM_{10} , SO_2 , NO_X (ambient levels as	Dong complica.
	well as stack emissions) or critical sectoral	
	parameters, indicated for the projects and	
	display the same at a convenient location	
	for disclosure to the public and put on the	
	website of the company;	
f.	submit six monthly reports on the status of	Being complied.
	the compliance of the stipulated	
	environmental conditions including results	
	of monitored data (both in hard copies as	
	well as by e-mail) to the Regional Office of	
	MoEF&CC, the respective Zonal Office of	
	CPCB and the SPCB;	
g.	submit the environmental statement for	Being complied.
	each financial year in Form-V to the	
	concerned State Pollution Control Board as	
	prescribed under the Environment	
	(Protection) Rules, 1986, as amended subsequently and put on the website of the	
	company;	
h.	inform the Regional Office as well as the	Shall be done.
11.	Ministry, the date of financial closure and	
	final approval of the project by the	
	concerned authorities and the date of	
	commencing the land development work.	
	The Ministry of Environment, Forest and	
	Climate Change has considered the	
	application based on the recommendations	
	of the Expert Appraisal Committee	
	(Industry-I) and hereby decided to grant	
	environmental clearance for the proposed	
28.0	expansion of Integrated Steel Plant & Captive Power Plant (Sponge Iron Plant:	
40.0	200 TPD; Steel Melting Shop: 135000 TPA;	
	and WHRB 8 MW) at village Punjipatra,	
	District Raigarh, Chhattisgarh by M/s	
	Scania Steels and Powers Limited under	
	the provisions of EIA Notification, 14 th	
	September, 2006, as amended, subject to	
	strict compliance of the above conditions.	
	The Ministry may revoke or suspend the	
29.0	clearance, if implementation of any of the	-
	above conditions is not satisfactory.	
	The Ministry reserves the right to stipulate	
30.0	additional conditions if found necessary.	_
	The Company in a time bound manner	
	shall implement these conditions.	Associated the state of the sta
	The project proponent shall abide by all the	Agreed and shall be complied.
30.0	commitments and recommendations made	
	in the EIA/EMP report and that during	
	their presentation to the Expert Appraisal	

	Committee. The commitment made by the	
	project proponent to the issue raised	
	during Public Hearing shall be	
	implemented by the proponent	
	The above conditions shall be enforced,	The company has already been granted
	inter-alia under the provisions of the Water	authorization under the Hazardous and
	(Prevention & Control of Pollution) Act,	the Other Wastes (Management &
	1974, the Air (Prevention & Control of	Transboundary Movement Rules), 2016
	Pollution) Act, 1981, the Environment	by Chhattisgarh Environment
31.0	(Protection) Act, 1986, Hazardous and	Conservation Board (CECB), which is
01.0	Other Wastes (Management and	attached as Annexure-10 .
	Transboundary Movement) Rules, 2016	attached as Amicaure-10.
	,	771
	and the Public Liability Insurance Act,	The copy of the policy under the Public
	1991 along with their amendments and	Liability Insurance Act, 1991 is also
	rules.	attached as Annexure-11 .
	This EC is issued in supersession of earlier	
32.0	EC vide F. No. J- 11011/1267/2007-IA.II(I)	-
	dated 5 th November 2008.	
	Any appeal against this EC shall lie with	
	the National Green Tribunal, if preferred,	
33.0	within a period of 30 days as prescribed	_
	under Section 16 of the National Green	
	Tribunal Act, 2010.	

LIST OF ANNEXURES:

Annexure-1: Stack Emission Monitoring Reports.

Annexure-2: Online Continuous Stack Emission Monitoring Data.

Annexure-3: Monitored Data of Ambient Air Quality.

Annexure-4: Online Continuous air quality monitoring

Annexure-5: Monitored Data of Fugitive emission.

Annexure-6: Analysis report of Cooling Discharge Water.

Annexure-7: Analysis report for ground water quality taken from the borewell inside the plant.

Annexure-8: Noise Level Monitoring Data.

Annexure-9: Advertisement in Local Newspapers after EC accorded.

Annexure-10: Authorization under the Hazardous and the Other Wastes (Management & Transboundary Movement Rules), 2016 by Chhattisgarh Environment Conservation Board (CECB).

Annexure-11: Copy of the policy under the Public Liability Insurance Act, 1991.

ANNEXURE-1

Stack Emission Monitoring Report (October - 2022 to March - 2023)

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India
- Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 - + 91 33 2443 8127/8128; + 91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

No. 2022-23/EEPL/MON/SC/210

ANX-1 28.10.2022

ANALYSIS REPORT OF FLUE GAS

Name of Industry	M/s. Scania Steels & Powers Ltd. (Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.
Address	22 KM Stone Gharghoda Road, Vill: Panjipatra, Raigarh, Pin: 496 011
Date of Sampling	14.10.2022
Time of Sampling	10:10 hrs;

A.	General Information about stack			
1	Stack connected to	DRI Kilns (1 & 2)		
2	Emission due to		Burning of Charging Materials (Coal &	
		Dolomite etc)		
3	Material of Construction of Stack	M.S		
4	Shape of Stack	Circular		
5	Whether Stack is provided with Permanent Platform & Ladders	Permanent		
6	Capacity	100 TPD X 2		
В.	Physical Characteristics of Stack			
1	Height of the stack			
	(a) from Ground Level (m)	54.0		
	(b) from Roof Level (m)	-		
2	Diameter of the stack			
	(a) at bottom (m)	-		
	(b) at top (m)	-		
3	Diameter of the stack at sampling point (m)	2.0		
4	Height of the sampling point from GL (m)	-		
C.	Analysis/Characteristics of Stack			
1	Fuel used	Coal		
2	Fuel consumption	1.1 T/hr.		
D	Field Study of Stack(s)	Reference Method	Concentration	
1	Temperature of emission (°C)	IS 11255 (Part 1)	110	
2	Barometric Pressure (mmHg)	-	751	
3	Velocity of gas in duct (M/sec)	IS 11255 (Part 3)	10.53	
4	Quantity of gas flow (Nm ³ /hr)	IS 11255 (Part 3)	90277	
5	Concentration of CO (% V/V)	IS 13270	-	
6	Concentration of CO ₂ (% V/V)	IS 13270	7.9	
E	Laboratory Test Result(s)			
7	Concentration of SO ₂ (mg/Nm ³)	IS 11255 (Part 2)	-	
8	Concentration of NOx (mg/Nm³)	US EPA, Method 7	-	
9	Concentration of PM (mg/Nm³)	IS 11255 (Part 1)	25.1	
10	Concentration of PM (mg/Nm³) at 12% CO ₂	-		
E	Pollution Control Device			
	Details of pollution control device attached with the stack	ESP		
F	Remarks: There is a common stack, connected to the DRI Kilns	(1 & 2). Both the DRI K	ilns (1 & 2) were in	
	operation at the time of sampling.			

Note: - - Contents of this report are meant for your guidance and should not be used for Advertisement, Evidence or Litigation - The Physical information about stack details (viz. height, diameter etc.) were provided by respective Industry/Party

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 - + 91 33 2443 8127/8128; + 91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

ANX-1 28.10.2022

No. 2022-23/EEPL/MON/SC/211

ANALYSIS REPORT OF FLUE GAS

Name of Industry	M/s. Scania Steels & Powers Ltd. (Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)	
Address	22 KM Stone Gharghoda Road, Vill: Panjipatra, Raigarh, Pin: 496 011	
Date of Sampling	14.10.2022	
Time of Sampling	13:30 hrs;	

A.	General Information about stack		
1	Stack connected to	DRI Kilns (3 & 4)	
2	Emission due to	Burning of Charge Materials (Coal &	
		Dolomite)	
3	Material of Construction of Stack	M.S	
4	Shape of Stack	Circular	
5	Whether Stack is provided with Permanent Platform & Ladders	Permanent	
6	Capacity	100 TPD X 2	
B.	Physical Characteristics of Stack		
1	Height of the stack		
	(a) from Ground Level (m)	55.0	
	(b) from Roof Level (m)	-	
2	Diameter of the stack		
	(a) at bottom (m)	-	
	(b) at top (m)	-	
3	Diameter of the stack at sampling point (m)	2.0	
4	Height of the sampling point from GL (m)	-	
C.	Analysis/Characteristics of Stack		
1	Fuel used	Coal	
2	Fuel consumption	1.1 T/hr.	
D	Field Study of Stack(s)	Reference Method	Concentration
1	Temperature of emission (°C)	IS 11255 (Part 1)	102
2	Barometric Pressure (mmHg)	-	751
3	Velocity of gas in duct (M/sec)	IS 11255 (Part 3)	10.8
4	Quantity of gas flow (Nm ³ /hr)	IS 11255 (Part 3)	93042
5	Concentration of CO (% V/V)	IS 13270	-
6	Concentration of CO ₂ (% V/V)	IS 13270	8.1
E	Laboratory Test Result(s)		
7	Concentration of SO ₂ (mg/Nm ³)	IS 11255 (Part 2)	-
8	Concentration of NOx (mg/Nm³)	US EPA, Method 7	-
9	Concentration of PM (mg/Nm ³)	IS 11255 (Part 1)	22.2
10	Concentration of PM (mg/Nm ³) at 12% CO ₂	-	
E	Pollution Control Device		
	Details of pollution control device attached with the stack	ESP	
F	Remarks: There is a common stack, connected to the DRI Kilns	(3 & 4). Both the DRI K	ilns (3 & 4) were in
	operation at the time of sampling.		

Note: - - Contents of this report are meant for your guidance and should not be used for Advertisement, Evidence or Litigation

The Physical information about stack details (viz. height, diameter etc.) were provided by respective Industry/Party

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 - + 91 33 2443 8127/8128; + 91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

No. 2022-23/EEPL/MON/SC/223

ANX-1 29.11.2022

ANALYSIS REPORT OF FLUE GAS

Name of Industry	M/s. Scania Steels & Powers Ltd.	
	(Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.	
Address	22 KM Stone Gharghoda Road, Vill: Panjipatra, Raigarh, Pin: 496 011	
Date of Sampling	15.11.2022	
Time of Sampling	10:00 hrs;	

A.	General Information about stack		
1	Stack connected to	DRI Kilns (1 & 2)	
2	Emission due to	Burning of Charging Materials (Coal &	
		Dolomite etc)	
3	Material of Construction of Stack	M.S	
4	Shape of Stack	Circular	
5	Whether Stack is provided with Permanent Platform & Ladders	Permanent	
6	Capacity	100 TPD X 2	
B.	Physical Characteristics of Stack		
1	Height of the stack		
	(a) from Ground Level (m)	54.0	
	(b) from Roof Level (m)	-	
2	Diameter of the stack		
	(a) at bottom (m)	-	
	(b) at top (m)	-	
3	Diameter of the stack at sampling point (m)	2.0	
4	Height of the sampling point from GL (m)	-	
C.	Analysis/Characteristics of Stack		
1	Fuel used	Coal	
2	Fuel consumption	1.1 T/hr.	
D	Field Study of Stack(s)	Reference Method	Concentration
1	Temperature of emission (°C)	IS 11255 (Part 1)	106
2	Barometric Pressure (mmHg)	-	752
3	Velocity of gas in duct (M/sec)	IS 11255 (Part 3)	10.8
4	Quantity of gas flow (Nm ³ /hr)	IS 11255 (Part 3)	93761
5	Concentration of CO (% V/V)	IS 13270	-
6	Concentration of CO ₂ (% V/V)	IS 13270	7.7
E	Laboratory Test Result(s)		
7	Concentration of SO ₂ (mg/Nm ³)	IS 11255 (Part 2)	-
8	Concentration of NOx (mg/Nm³)	US EPA, Method 7	-
9	Concentration of PM (mg/Nm ³)	IS 11255 (Part 1)	23.0
10	Concentration of PM (mg/Nm³) at 12% CO ₂	_ ` ′	
E	Pollution Control Device		•
	Details of pollution control device attached with the stack	ESP	
F	Remarks: There is a common stack, connected to the DRI Kiln	ns (1 & 2). Both the DRI K	Zilns (1 & 2) were i
	operation at the time of sampling.	` /	, ,

Note: - - Contents of this report are meant for your guidance and should not be used for Advertisement, Evidence or Litigation - The Physical information about stack details (viz. height, diameter etc.) were provided by respective Industry/Party

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 - + 91 33 2443 8127/8128; + 91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

No. 2022-23/EEPL/MON/SC/224

ANX-1 29.11.2022

ANALYSIS REPORT OF FLUE GAS

Name of Industry	M/s. Scania Steels & Powers Ltd. (Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)
Address	22 KM Stone Gharghoda Road, Vill: Panjipatra, Raigarh, Pin: 496 011
Date of Sampling	15.11.2022
Time of Sampling	13:00 hrs;

A.	General Information about stack		
1	Stack connected to	DRI Kilns (3 & 4)	
2	Emission due to	Burning of Charge Materials (Coal &	
		Dolomite)	
3	Material of Construction of Stack	M.S	
4	Shape of Stack	Circular	
5	Whether Stack is provided with Permanent Platform & Ladders	Permanent	
6	Capacity	100 TPD X 2	
B.	Physical Characteristics of Stack		
1	Height of the stack		
	(a) from Ground Level (m)	55.0	
	(b) from Roof Level (m)	-	
2	Diameter of the stack		
	(a) at bottom (m)	-	
	(b) at top (m)	-	
3	Diameter of the stack at sampling point (m)	2.0	
4	Height of the sampling point from GL (m)	-	
C.	Analysis/Characteristics of Stack		
1	Fuel used	Coal	
2	Fuel consumption	1.1 T/hr.	
D	Field Study of Stack(s)	Reference Method	Concentration
1	Temperature of emission (°C)	IS 11255 (Part 1)	115
2	Barometric Pressure (mmHg)	-	752
3	Velocity of gas in duct (M/sec)	IS 11255 (Part 3)	11.4
4	Quantity of gas flow (Nm ³ /hr)	IS 11255 (Part 3)	96296
5	Concentration of CO (% V/V)	IS 13270	-
6	Concentration of CO ₂ (% V/V)	IS 13270	8.0
E	Laboratory Test Result(s)		
7	Concentration of SO ₂ (mg/Nm ³)	IS 11255 (Part 2)	-
8	Concentration of NOx (mg/Nm ³)	US EPA, Method 7	-
9	Concentration of PM (mg/Nm ³)	IS 11255 (Part 1)	24.0
10	Concentration of PM (mg/Nm ³) at 12% CO ₂	-	
E	Pollution Control Device		
	Details of pollution control device attached with the stack	ESP	
F	Remarks: There is a common stack, connected to the DRI Kilns	(3 & 4). Both the DRI Ki	ilns (3 & 4) were in
	operation at the time of sampling.		

Note: - - Contents of this report are meant for your guidance and should not be used for Advertisement, Evidence or Litigation The Physical information about stack details (viz. height, diameter etc.) were provided by respective Industry/Party

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 - + 91 33 2443 8127/8128; + 91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

No. 2022-23/EEPL/MON/SC/231

ANX-1 27.12.2022

ANALYSIS REPORT OF FLUE GAS

Name of Industry	M/s. Scania Steels & Powers Ltd.	
	(Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.	
Address	22 KM Stone Gharghoda Road, Vill: Panjipatra, Raigarh, Pin: 496 011	
Date of Sampling	13.12.2022	
Time of Sampling	10:30 hrs;	

General Information about stack		
Stack connected to	DRI Kilns (1 & 2)	
Emission due to	Burning of Charging Materials (Coal &	
	Dolomite etc)	
Material of Construction of Stack		
	Circular	
Whether Stack is provided with Permanent Platform & Ladders	Permanent	
Capacity	100 TPD X 2	
Physical Characteristics of Stack		
Height of the stack		
(a) from Ground Level (m)	54.0	
(b) from Roof Level (m)	-	
Diameter of the stack		
(a) at bottom (m)	-	
(b) at top (m)	-	
Diameter of the stack at sampling point (m)	2.0	
Height of the sampling point from GL (m)	-	
Analysis/Characteristics of Stack		
	Coal	
	1.1 T/hr.	
Field Study of Stack(s)	Reference Method	Concentration
Temperature of emission (°C)	IS 11255 (Part 1)	123
	-	753
		11.06
		90750
Concentration of CO (% V/V)	IS 13270	-
Concentration of CO ₂ (% V/V)	IS 13270	8.2
Laboratory Test Result(s)		
Concentration of SO ₂ (mg/Nm ³)	IS 11255 (Part 2)	-
Concentration of NOx (mg/Nm³)	US EPA, Method 7	-
Concentration of PM (mg/Nm ³)	IS 11255 (Part 1)	21.3
Concentration of PM (mg/Nm ³) at 12% CO ₂	-	
Pollution Control Device		
	ESP	
	ns (1 & 2). Both the DRI K	filns (1 & 2) were in
operation at the time of sampling.		
	Stack connected to Emission due to Material of Construction of Stack Shape of Stack Whether Stack is provided with Permanent Platform & Ladders Capacity Physical Characteristics of Stack Height of the stack (a) from Ground Level (m) (b) from Roof Level (m) Diameter of the stack (a) at bottom (m) (b) at top (m) Diameter of the stack at sampling point (m) Height of the sampling point from GL (m) Analysis/Characteristics of Stack Fuel used Fuel consumption Field Study of Stack(s) Temperature of emission (°C) Barometric Pressure (mmHg) Velocity of gas in duct (M/sec) Quantity of gas flow (Nm³/hr) Concentration of CO (% V/V) Laboratory Test Result(s) Concentration of NOx (mg/Nm³) Concentration of PM (mg/Nm³) Concentration of PM (mg/Nm³) Concentration of PM (mg/Nm³) Concentration Control Device Details of pollution control device attached with the stack Remarks: There is a common stack, connected to the DRI Kiln	Stack connected to Emission due to Burning of Charging Mat Dolomite etc) Material of Construction of Stack Shape of Stack Whether Stack is provided with Permanent Platform & Ladders Capacity Physical Characteristics of Stack (a) from Ground Level (m) (b) from Roof Level (m) Diameter of the stack (a) at bottom (m) (b) at top (m) Diameter of the sampling point from GL (m) Analysis/Characteristics of Stack Fuel used Fuel consumption Field Study of Stack(s) Temperature of emission (°C) Barometric Pressure (mmHg) Concentration of CO (% V/V) Laboratory Test Result(s) Concentration of PM (mg/Nm³) Concentration of PM (mg/Nm³) Concentration of PM (mg/Nm³) Concentration of PM (mg/Nm³) at 12% CO2 Pollution Control Device Pemanent Burning of Charging Mat M.S Surning of Charging Mat Burning of Charging Mat Burning of Charging Mat Burning of Charging Mat M.S Circular M.S Circular Permanent 100 TPD X 2 Permanent 100 TPD X 2 Permanent 100 TPD X 2 Permanent 240 Test manent Circular Permanent 100 TPD X 2 Permanent 240 Circular Permanent 240 Test stack 100 TPD X 2 Permanent 240 Test stack 111 T/hr. Reference Method 11.1 T/hr. Reference Method 11.1 T/hr. Field Study of Stack(s) Reference Method 11.1 T/

Note: - - Contents of this report are meant for your guidance and should not be used for Advertisement, Evidence or Litigation

- The Physical information about stack details (viz. height, diameter etc.) were provided by respective Industry/Party

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

ANX-1

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 - + 91 33 2443 8127/8128; + 91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

No. 2022-23/EEPL/MON/SC/232

27.12.2022

ANALYSIS REPORT OF FLUE GAS

Name of Industry	M/s. Scania Steels & Powers Ltd. (Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)	
Address	22 KM Stone Gharghoda Road, Vill: Panjipatra, Raigarh, Pin: 496 011	
Date of Sampling	13.12.2022	
Time of Sampling	13:20 hrs;	

A.	General Information about stack			
1	Stack connected to	DRI Kilns (3 & 4)		
2	Emission due to	Burning of Charge Materials (Coal &		
		Dolomite)		
3	Material of Construction of Stack	M.S		
4	Shape of Stack	Circular		
5	Whether Stack is provided with Permanent Platform & Ladders	Permanent		
6	Capacity	100 TPD X 2		
B.	Physical Characteristics of Stack			
1	Height of the stack			
	(a) from Ground Level (m)	55.0		
	(b) from Roof Level (m)	-		
2	Diameter of the stack			
	(a) at bottom (m)	-		
	(b) at top (m)	-		
3	Diameter of the stack at sampling point (m)	2.0	2.0	
4	Height of the sampling point from GL (m)	-		
C.	Analysis/Characteristics of Stack			
1	Fuel used	Coal		
2	Fuel consumption	1.1 T/hr.		
D	Field Study of Stack(s)	Reference Method	Concentration	
1	Temperature of emission (°C)	IS 11255 (Part 1)	119	
2	Barometric Pressure (mmHg)	-	753	
3	Velocity of gas in duct (M/sec)	IS 11255 (Part 3)	10.76	
4	Quantity of gas flow (Nm ³ /hr)	IS 11255 (Part 3)	90462	
5	Concentration of CO (% V/V)	IS 13270	-	
6	Concentration of CO ₂ (% V/V)	IS 13270	8.4	
E	Laboratory Test Result(s)			
7	Concentration of SO ₂ (mg/Nm ³)	IS 11255 (Part 2)	-	
8	Concentration of NOx (mg/Nm³)	US EPA, Method 7	-	
9	Concentration of PM (mg/Nm ³)	IS 11255 (Part 1)	27.0	
10	Concentration of PM (mg/Nm³) at 12% CO ₂	-		
E	Pollution Control Device			
	Details of pollution control device attached with the stack	ESP		
F	Remarks: There is a common stack, connected to the DRI Kilns	(3 & 4). Both the DRI Ki	ilns (3 & 4) were in	
	operation at the time of sampling.			

Note: - - Contents of this report are meant for your guidance and should not be used for Advertisement, Evidence or Litigation

The Physical information about stack details (viz. height, diameter etc.) were provided by respective Industry/Party

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 - + 91 33 2443 8127/8128; + 91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

No. 2022-23/EEPL/MON/SC/240

ANX-1 24.01.2023

ANALYSIS REPORT OF FLUE GAS

Name of Industry	M/s. Scania Steels & Powers Ltd.	
	(Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.	
Address	22 KM Stone Gharghoda Road, Vill: Panjipatra, Raigarh, Pin: 496 011	
Date of Sampling	09.01.2023	
Time of Sampling	10:15 hrs;	

A.	General Information about stack			
1	Stack connected to	DRI Kilns (1 & 2)		
2	Emission due to	Burning of Charging Materials (Coal &		
		Dolomite etc)	•	
3	Material of Construction of Stack	M.S		
4	Shape of Stack	Circular		
5	Whether Stack is provided with Permanent Platform & Ladders	Permanent		
6	Capacity	100 TPD X 2		
В.	Physical Characteristics of Stack			
1	Height of the stack			
	(a) from Ground Level (m)	54.0		
	(b) from Roof Level (m)	-		
2	Diameter of the stack			
	(a) at bottom (m)	-		
	(b) at top (m)	-		
3	Diameter of the stack at sampling point (m)	2.0		
4	Height of the sampling point from GL (m)	-		
C.	Analysis/Characteristics of Stack			
1	Fuel used	Coal		
2	Fuel consumption	1.1 T/hr.		
D	Field Study of Stack(s)	Reference Method	Concentration	
1	Temperature of emission (°C)	IS 11255 (Part 1)	121	
2	Barometric Pressure (mmHg)	-	754	
3	Velocity of gas in duct (M/sec)	IS 11255 (Part 3)	11.1	
4	Quantity of gas flow (Nm ³ /hr)	IS 11255 (Part 3)	92803	
5	Concentration of CO (% V/V)	IS 13270	-	
6	Concentration of CO ₂ (% V/V)	IS 13270	8.6	
\mathbf{E}	Laboratory Test Result(s)			
7	Concentration of SO ₂ (mg/Nm ³)	IS 11255 (Part 2)	-	
8	Concentration of NOx (mg/Nm³)	US EPA, Method 7	-	
9	Concentration of PM (mg/Nm ³)	IS 11255 (Part 1)	29.0	
10	Concentration of PM (mg/Nm ³) at 12% CO ₂	-		
E	Pollution Control Device			
	Details of pollution control device attached with the stack	ESP		
F	Remarks: There is a common stack, connected to the DRI Kiln	ns (1 & 2). Both the DRI K	Cilns (1 & 2) were in	
	operation at the time of sampling.	•		

Note: - - Contents of this report are meant for your guidance and should not be used for Advertisement, Evidence or Litigation - The Physical information about stack details (viz. height, diameter etc.) were provided by respective Industry/Party

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India
- Laboratory Recognized by WBPCB

24.01.2023

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 - + 91 33 2443 8127/8128; + 91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

ANX-1

No. 2022-23/EEPL/MON/SC/241

ANALYSIS REPORT OF FLUE GAS

Name of Industry	M/s. Scania Steels & Powers Ltd. (Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)
Address	22 KM Stone Gharghoda Road, Vill: Panjipatra, Raigarh, Pin: 496 011
Date of Sampling	09.01.2023
Time of Sampling	13:40 hrs;

A.	General Information about stack			
1	Stack connected to	DRI Kilns (3 & 4)		
2	Emission due to	Burning of Charge Ma	aterials (Coal &	
		Dolomite)	•	
3	Material of Construction of Stack	M.S		
4	Shape of Stack	Circular		
5	Whether Stack is provided with Permanent Platform & Ladders	Permanent		
6	Capacity	100 TPD X 2		
B.	Physical Characteristics of Stack			
1	Height of the stack			
	(a) from Ground Level (m)	55.0		
	(b) from Roof Level (m)	-		
2	Diameter of the stack			
	(a) at bottom (m)	-		
	(b) at top (m)	-		
3	Diameter of the stack at sampling point (m)	2.0		
4	Height of the sampling point from GL (m)	-		
C.	Analysis/Characteristics of Stack			
1	Fuel used	Coal		
2	Fuel consumption	1.1 T/hr.		
D	Field Study of Stack(s)	Reference Method	Concentration	
1	Temperature of emission (°C)	IS 11255 (Part 1)	125	
2	Barometric Pressure (mmHg)	-	754	
3	Velocity of gas in duct (M/sec)	IS 11255 (Part 3)	11.9	
4	Quantity of gas flow (Nm ³ /hr)	IS 11255 (Part 3)	98523	
5	Concentration of CO (% V/V)	IS 13270	-	
6	Concentration of CO ₂ (% V/V)	IS 13270	8.7	
E	Laboratory Test Result(s)			
7	Concentration of SO ₂ (mg/Nm ³)	IS 11255 (Part 2)	-	
8	Concentration of NOx (mg/Nm³)	US EPA, Method 7	-	
9	Concentration of PM (mg/Nm ³)	IS 11255 (Part 1)	25.4	
10	Concentration of PM (mg/Nm³) at 12% CO ₂	-		
E	Pollution Control Device			
		l man		
	Details of pollution control device attached with the stack	ESP		
F	Details of pollution control device attached with the stack Remarks: There is a common stack, connected to the DRI Kilns operation at the time of sampling.		ilns (3 & 4) were in	

Note: - - Contents of this report are meant for your guidance and should not be used for Advertisement, Evidence or Litigation

The Physical information about stack details (viz. height, diameter etc.) were provided by respective Industry/Party

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India
- Laboratory Recognized by WBPCB

ANX-1

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 - + 91 33 2443 8127/8128; + 91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

No. 2022-23/EEPL/MON/SC/248 28.02.2023

ANALYSIS REPORT OF FLUE GAS

Name of Industry	M/s. Scania Steels & Powers Ltd.				
	(Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.				
Address	22 KM Stone Gharghoda Road, Vill: Panjipatra, Raigarh, Pin: 496 011				
Date of Sampling	13.02.2023				
Time of Sampling	10:50 hrs;				

A.	General Information about stack			
1	Stack connected to	DRI Kilns (1 & 2)		
2	Emission due to	Burning of Charging Materials (Coal &		
		Dolomite etc)		
3	Material of Construction of Stack	M.S		
4	Shape of Stack	Circular		
5	Whether Stack is provided with Permanent Platform & Ladders	Permanent		
6	Capacity	100 TPD X 2		
В.	Physical Characteristics of Stack			
1	Height of the stack			
	(a) from Ground Level (m)	54.0		
	(b) from Roof Level (m)	-		
2	Diameter of the stack			
	(a) at bottom (m)	-		
	(b) at top (m)	-		
3	Diameter of the stack at sampling point (m)	2.0		
4	Height of the sampling point from GL (m)	-		
C.	Analysis/Characteristics of Stack			
1	Fuel used	Coal		
2	Fuel consumption	1.1 T/hr.		
D	Field Study of Stack(s)	Reference Method	Concentration	
1	Temperature of emission (°C)	IS 11255 (Part 1)	126	
2	Barometric Pressure (mmHg)	-	750	
3	Velocity of gas in duct (M/sec)	IS 11255 (Part 3)	11.7	
4	Quantity of gas flow (Nm ³ /hr)	IS 11255 (Part 3)	96439	
5	Concentration of CO (% V/V)	IS 13270	-	
6	Concentration of CO ₂ (% V/V)	IS 13270	8.5	
E	Laboratory Test Result(s)			
7	Concentration of SO ₂ (mg/Nm ³)	IS 11255 (Part 2)	-	
8	Concentration of NOx (mg/Nm³)	US EPA, Method 7	-	
9	Concentration of PM (mg/Nm³)	IS 11255 (Part 1)	25.7	
10	Concentration of PM (mg/Nm³) at 12% CO ₂	-		
E	Pollution Control Device			
	Details of pollution control device attached with the stack	ESP		
F	Remarks: There is a common stack, connected to the DRI Kilns (1 & 2). Both the DRI Kilns (1 & 2) were in			
	operation at the time of sampling.			

- Contents of this report are meant for your guidance and should not be used for Advertisement, Evidence or Litigation
- The Physical information about stack details (viz. height, diameter etc.) were provided by respective Industry/Party Note: -

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

28.02.2023

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 - + 91 33 2443 8127/8128; + 91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

ANX-1

No. 2022-23/EEPL/MON/SC/249

ANALYSIS REPORT OF FLUE GAS

Name of Industry	M/s. Scania Steels & Powers Ltd. (Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)
Address	22 KM Stone Gharghoda Road, Vill: Panjipatra, Raigarh, Pin: 496 011
Date of Sampling	13.02.2023
Time of Sampling	13:20 hrs;

A.	General Information about stack				
1	Stack connected to	DRI Kilns (3 & 4)			
2	Emission due to	Burning of Charge Ma	aterials (Coal &		
		Dolomite)			
3	Material of Construction of Stack	M.S			
4	Shape of Stack	Circular			
5	Whether Stack is provided with Permanent Platform & Ladders	Permanent			
6	Capacity	100 TPD X 2			
B.	Physical Characteristics of Stack				
1	Height of the stack				
	(a) from Ground Level (m)	55.0			
	(b) from Roof Level (m)	-			
2	Diameter of the stack				
	(a) at bottom (m)	-			
	(b) at top (m)	-			
3	Diameter of the stack at sampling point (m)	2.0			
4	Height of the sampling point from GL (m)	-			
C.	Analysis/Characteristics of Stack				
1	Fuel used	Coal			
2	Fuel consumption	1.1 T/hr.			
D	Field Study of Stack(s)	Reference Method	Concentration		
1	Temperature of emission (°C)	IS 11255 (Part 1)	129		
2	Barometric Pressure (mmHg)	-	750		
3	Velocity of gas in duct (M/sec)	IS 11255 (Part 3)	11.8		
4	Quantity of gas flow (Nm ³ /hr)	IS 11255 (Part 3)	96120		
5	Concentration of CO (% V/V)	IS 13270	-		
6	Concentration of CO ₂ (% V/V)	IS 13270	8.0		
E	Laboratory Test Result(s)				
7	Concentration of SO ₂ (mg/Nm ³)	IS 11255 (Part 2)	-		
8	Concentration of NOx (mg/Nm³)	US EPA, Method 7	-		
9	Concentration of PM (mg/Nm ³)	IS 11255 (Part 1)	27.3		
10	Concentration of PM (mg/Nm ³) at 12% CO ₂	-			
E	Pollution Control Device				
	Details of pollution control device attached with the stack	ESP			
F					
ĺ	operation at the time of sampling.				

Note: - - Contents of this report are meant for your guidance and should not be used for Advertisement, Evidence or Litigation

The Physical information about stack details (viz. height, diameter etc.) were provided by respective Industry/Party

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 - + 91 33 2443 8127/8128; + 91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

No. 2022-23/EEPL/MON/SC/255

ANX-1 23.03.2023

ANALYSIS REPORT OF FLUE GAS

Name of Industry	M/s. Scania Steels & Powers Ltd.				
	(Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.				
Address	22 KM Stone Gharghoda Road, Vill: Panjipatra, Raigarh, Pin: 496 011				
Date of Sampling	10.03.2023				
Time of Sampling	10:40 hrs;				

A.	General Information about stack			
1	Stack connected to	DRI Kilns (1 & 2)		
2	Emission due to	Burning of Charging Mat	erials (Coal &	
		Dolomite etc)		
3	Material of Construction of Stack	M.S		
4	Shape of Stack	Circular		
5	Whether Stack is provided with Permanent Platform & Ladders	Permanent		
6	Capacity	100 TPD X 2		
В.	Physical Characteristics of Stack			
1	Height of the stack			
	(a) from Ground Level (m)	54.0		
	(b) from Roof Level (m)	-		
2	Diameter of the stack			
	(a) at bottom (m)	-		
	(b) at top (m)	-		
3	Diameter of the stack at sampling point (m)	2.0		
4	Height of the sampling point from GL (m)	-		
C.	Analysis/Characteristics of Stack			
1	Fuel used	Coal		
2	Fuel consumption	1.1 T/hr.		
D	Field Study of Stack(s)	Reference Method	Concentration	
1	Temperature of emission (°C)	IS 11255 (Part 1)	124	
2	Barometric Pressure (mmHg)	-	750	
3	Velocity of gas in duct (M/sec)	IS 11255 (Part 3)	10.95	
4	Quantity of gas flow (Nm ³ /hr)	IS 11255 (Part 3)	90471	
5	Concentration of CO (% V/V)	IS 13270	=	
6	Concentration of CO ₂ (% V/V)	IS 13270	8.1	
E	Laboratory Test Result(s)			
7	Concentration of SO ₂ (mg/Nm ³)	IS 11255 (Part 2)	-	
8	Concentration of NOx (mg/Nm³)	US EPA, Method 7	-	
9	Concentration of PM (mg/Nm ³)	IS 11255 (Part 1)	23.8	
10	Concentration of PM (mg/Nm³) at 12% CO ₂	-		
E	Pollution Control Device			
	Details of pollution control device attached with the stack	ESP		
F	Remarks: There is a common stack, connected to the DRI Kilns (1 & 2). Both the DRI Kilns (1 & 2) were in			
	operation at the time of sampling.			

Note: - - Contents of this report are meant for your guidance and should not be used for Advertisement, Evidence or Litigation - The Physical information about stack details (viz. height, diameter etc.) were provided by respective Industry/Party

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 - + 91 33 2443 8127/8128; + 91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

ANX-1

No. 2022-23/EEPL/MON/SC/256

23.03.2023

ANALYSIS REPORT OF FLUE GAS

Name of Industry	M/s. Scania Steels & Powers Ltd. (Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)
Address	22 KM Stone Gharghoda Road, Vill: Panjipatra, Raigarh, Pin: 496 011
Date of Sampling	10.03.2023
Time of Sampling	13:40 hrs;

Α.	General Information about stack			
1	Stack connected to	DRI Kilns (3 & 4)		
2	Emission due to	Burning of Charge Ma	aterials (Coal &	
		Dolomite)		
3	Material of Construction of Stack	M.S		
4	Shape of Stack	Circular		
5	Whether Stack is provided with Permanent Platform & Ladders	Permanent		
6	Capacity	100 TPD X 2		
B.	Physical Characteristics of Stack			
1	Height of the stack			
	(a) from Ground Level (m)	55.0		
	(b) from Roof Level (m)	-		
2	Diameter of the stack			
	(a) at bottom (m)	-		
	(b) at top (m)	-		
3	Diameter of the stack at sampling point (m)	2.0		
4	Height of the sampling point from GL (m)	-		
C.	Analysis/Characteristics of Stack			
1	Fuel used	Coal		
2	Fuel consumption	1.1 T/hr.		
D	Field Study of Stack(s)	Reference Method	Concentration	
1	Temperature of emission (°C)	IS 11255 (Part 1)	121	
2	Barometric Pressure (mmHg)	-	750	
3	Velocity of gas in duct (M/sec)	IS 11255 (Part 3)	11.55	
4	Quantity of gas flow (Nm ³ /hr)	IS 11255 (Part 3)	96157	
5	Concentration of CO (% V/V)	IS 13270	=	
5	Concentration of CO ₂ (% V/V)	IS 13270 IS 13270	8.4	
			8.4	
6	Concentration of CO ₂ (% V/V) Laboratory Test Result(s) Concentration of SO ₂ (mg/Nm ³)	IS 13270 IS 11255 (Part 2)	8.4	
6 E 7 8	Concentration of CO ₂ (% V/V) Laboratory Test Result(s) Concentration of SO ₂ (mg/Nm³) Concentration of NOx (mg/Nm³)	IS 13270 IS 11255 (Part 2) US EPA, Method 7	-	
6 E 7 8 9	Concentration of CO ₂ (% V/V) Laboratory Test Result(s) Concentration of SO ₂ (mg/Nm³) Concentration of NOx (mg/Nm³) Concentration of PM (mg/Nm³)	IS 13270 IS 11255 (Part 2)	- 8.4 - - 26.6	
6 E 7 8 9 10	Concentration of CO ₂ (% V/V) Laboratory Test Result(s) Concentration of SO ₂ (mg/Nm³) Concentration of NOx (mg/Nm³) Concentration of PM (mg/Nm³) Concentration of PM (mg/Nm³) at 12% CO ₂	IS 13270 IS 11255 (Part 2) US EPA, Method 7	-	
6 E 7 8 9	Concentration of CO ₂ (% V/V) Laboratory Test Result(s) Concentration of SO ₂ (mg/Nm³) Concentration of NOx (mg/Nm³) Concentration of PM (mg/Nm³) Concentration of PM (mg/Nm³) at 12% CO ₂ Pollution Control Device	IS 13270 IS 11255 (Part 2) US EPA, Method 7 IS 11255 (Part 1) -	-	
6 E 7 8 9 10 E	Concentration of CO ₂ (% V/V) Laboratory Test Result(s) Concentration of SO ₂ (mg/Nm³) Concentration of NOx (mg/Nm³) Concentration of PM (mg/Nm³) Concentration of PM (mg/Nm³) at 12% CO ₂ Pollution Control Device Details of pollution control device attached with the stack	IS 13270 IS 11255 (Part 2) US EPA, Method 7 IS 11255 (Part 1)	26.6	
6 E 7 8 9 10	Concentration of CO ₂ (% V/V) Laboratory Test Result(s) Concentration of SO ₂ (mg/Nm³) Concentration of NOx (mg/Nm³) Concentration of PM (mg/Nm³) Concentration of PM (mg/Nm³) at 12% CO ₂ Pollution Control Device Details of pollution control device attached with the stack Remarks: There is a common stack, connected to the DRI Kilns	IS 13270 IS 11255 (Part 2) US EPA, Method 7 IS 11255 (Part 1)	26.6	
6 E 7 8 9 10 E	Concentration of CO ₂ (% V/V) Laboratory Test Result(s) Concentration of SO ₂ (mg/Nm³) Concentration of NOx (mg/Nm³) Concentration of PM (mg/Nm³) Concentration of PM (mg/Nm³) at 12% CO ₂ Pollution Control Device Details of pollution control device attached with the stack	IS 13270 IS 11255 (Part 2) US EPA, Method 7 IS 11255 (Part 1)	26.6 ilns (3 & 4) were in	

Note: - - Contents of this report are meant for your guidance and should not be used for Advertisement, Evidence or Litigation

The Physical information about stack details (viz. height, diameter etc.) were provided by respective Industry/Party

For ENVIROTECH EAST (P) LTD.

Industry: M/s Scania Steels and Powers Limited (Formerly Known as Sidhi Vinayak Sponge Iron Pvt Ltd),

Industry Code: 08CG336 Industry Category: Steel & Iron Industry Type: Emission

Station: Stack_2_ESP_Sponge_Iron_2x100_TPD_DRI_3and4Kiln

Raigarh, Chhattisgarh

	Stack_1_ESP_Sponge_ Iron2x100_TPD_DRI_Ki In_1_2(PM)		Iron2x100_TPD_DRI_Ki		Stack_2_ESP_Sponge_ Iron_2x100_TPD_DRI_ 3and4Kiln(PM)		Iro	Stack_2_ESP_Sponge_ lron_2x100_TPD_DRI_ 3and4Kiln(SO2)	
Range	0-500	(0-250 0-		0-100	0-1000		0-1000	
Limit	100	-	-NA-		100		-N	-NA-	
Min	24.77	Ę	57.42		1.13	1.13		5.95	
Max	25.13	Ę	58.93		22.1		17	17.9	
Avg	24.97	Ę	58.3		20.79		17	.07	
SL	Datentime	Stack_1_E nge_Iron2 D_DRI_Kil M)	x100_TP	Stack_1_ES nge_Iron2x1 D_DRI_Kiln_ O2)	00_TP	Stack_2_ESP_Sp nge_Iron_2x100_ PD_DRI_3and4K n(PM)	Τ_	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(SO2)	
1	2022-10-02 00:00:00	24.956		58.445		21.311		17.566	
2	2022-10-03 00:00:00	25.053		57.42		21.791		17.673	
3	2022-10-04 00:00:00	24.962		58.354		21.267		17.232	
4	2022-10-05 00:00:00	25.004		58.216		21.591		17.538	
5	2022-10-06 00:00:00	25.072		58.815		21.268		17.333	
6	2022-10-07 00:00:00	25.127		58.797		21.14		17.186	
7	2022-10-08 00:00:00	24.894		58.014		21.671		16.927	
8	2022-10-09 00:00:00	24.981		58.731		21.028		17.028	
9	2022-10-10 00:00:00	24.851		58.755		21.303		17.411	
10	2022-10-11	25.012		58.934		21.319		17.867	

Industry: M/s Scania Steels and Powers Limited (Formerly Known as Sidhi Vinayak Sponge Iron Pvt Ltd),

Industry Code: 08CG336 Industry Category: Steel & Iron Industry Type: Emission

Station: Stack_2_ESP_Sponge_Iron_2x100_TPD_DRI_3and4Kiln

Raigarh, Chhattisgarh

SL	Datentime	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_KiIn_1_2(P M)	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(S O2)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(PM)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(SO2)
	00:00:00				
11	2022-10-12 00:00:00	24.918	57.932	21.441	17.499
12	2022-10-13 00:00:00	24.842	58.199	21.586	17.17
13	2022-10-14 00:00:00	25.018	57.491	21.921	17.003
14	2022-10-15 00:00:00	25.041	57.973	21.803	17.777
15	2022-10-16 00:00:00	24.94	58.032	21.873	17.85
16	2022-10-17 00:00:00	24.987	58.112	21.457	17.832
17	2022-10-18 00:00:00	25.025	57.871	21.403	17.903
18	2022-10-19 00:00:00	24.954	57.96	20.934	17.226
19	2022-10-20 00:00:00	25.013	58.402	21.713	17.2
20	2022-10-21 00:00:00	24.773	58.517	21.707	17.448
21	2022-10-22 00:00:00	24.933	58.488	21.171	17.602
22	2022-10-23 00:00:00	25.049	58.702	21.358	17.79
23	2022-10-24 00:00:00	25.09	58.73	21.371	17.058
24	2022-10-25	24.896	58.668	21.349	17.683

Industry: M/s Scania Steels and Powers Limited (Formerly Known as Sidhi Vinayak Sponge Iron Pvt Ltd),

Industry Code: 08CG336 Industry Category: Steel & Iron Industry Type: Emission

Station: Stack_2_ESP_Sponge_Iron_2x100_TPD_DRI_3and4Kiln

Raigarh, Chhattisgarh

SL	Datentime	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(P M)	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(S O2)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(PM)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(SO2)
	00:00:00				
25	2022-10-26 00:00:00	24.99	58.757	21.324	17.49
26	2022-10-27 00:00:00	24.921	58.004	21.542	17.53
27	2022-10-28 00:00:00	24.952	57.754	21.398	17.55
28	2022-10-29 00:00:00	24.956	NA	21.321	17.238
29	2022-10-30 00:00:00	24.92	NA	21.033	17.323
30	2022-10-31 00:00:00	25	NA	22.1	17.14
31	2022-11-01 00:00:00	24.885	NA	1.125	5.948

Industry: M/s Scania Steels and Powers Limited (Formerly Known as Sidhi Vinayak Sponge Iron Pvt Ltd),

Industry Code: 08CG336 Industry Category: Steel & Iron Industry Type: Emission

Station: Stack_2_ESP_Sponge_Iron_2x100_TPD_DRI_3and4Kiln

Raigarh, Chhattisgarh

	Stack_1_ESP_S Iron2x100_TPD In_1_2(PM)		ESP_Sponge_ 0_TPD_DRI_Ki O2)	Iron_2x	2_ESP_Sponge_ 100_TPD_DRI_ iiln(PM)	Stack_2_ESP_Sponge_ Iron_2x100_TPD_DRI_ 3and4Kiln(SO2)
Range	0-500	0-250		0-100	0	0-1000
Limit	100	-NA-		100		-NA-
Min	18.5	0		21.25		17.14
Max	25.08	0		43.1		30.32
Avg	22.23	NAN		26.9		25.1
SL	Datentime	Stack_1_ESP_Sponge_Iron2x100_TF D_DRI_Kiln_1_2(F	nge_Iron2x	100_TP	Stack_2_ESP_Sp nge_Iron_2x100_ PD_DRI_3and4K n(PM)	T nge_Iron_2x100_T
1	2022-11-02 00:00:00	24.854	NA		21.252	17.969
2	2022-11-03 00:00:00	24.82	NA		21.296	17.658
3	2022-11-04 00:00:00	24.984	NA		21.727	17.785
4	2022-11-05 00:00:00	25.078	NA		21.876	17.66
5	2022-11-06 00:00:00	24.955	NA		21.71	17.564
6	2022-11-07 00:00:00	24.791	NA		21.855	17.137
7	2022-11-08 00:00:00	25.03	NA		21.654	17.467
8	2022-11-09 00:00:00	24.992	NA		21.334	17.645
9	2022-11-10 00:00:00	NA	NA		NA	NA
10	2022-11-11	NA	NA		NA	NA

Industry: M/s Scania Steels and Powers Limited (Formerly Known as Sidhi Vinayak Sponge Iron Pvt Ltd),

Industry Code: 08CG336 Industry Category: Steel & Iron Industry Type: Emission

Station: Stack_2_ESP_Sponge_Iron_2x100_TPD_DRI_3and4Kiln

Raigarh, Chhattisgarh

SL	Datentime	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(P M)	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(S O2)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(PM)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(SO2)
	00:00:00				
11	2022-11-12 00:00:00	NA	NA	NA	NA
12	2022-11-13 00:00:00	NA	NA	NA	NA
13	2022-11-14 00:00:00	NA	NA	NA	NA
14	2022-11-15 00:00:00	NA	NA	NA	NA
15	2022-11-16 00:00:00	NA	NA	NA	NA
16	2022-11-17 00:00:00	NA	NA	NA	NA
17	2022-11-18 00:00:00	18.5	NA	29.941	30.318
18	2022-11-19 00:00:00	20	NA	28.918	30.166
19	2022-11-20 00:00:00	20	NA	28.835	29.949
20	2022-11-21 00:00:00	20	NA	28.862	30.08
21	2022-11-22 00:00:00	20	NA	28.604	30.286
22	2022-11-23 00:00:00	20	NA	28.902	30.107
23	2022-11-24 00:00:00	20	NA	28.863	30.265
24	2022-11-25	19.986	NA	28.903	30.069

Industry: M/s Scania Steels and Powers Limited (Formerly Known as Sidhi Vinayak Sponge Iron Pvt Ltd),

Industry Code: 08CG336 Industry Category: Steel & Iron Industry Type: Emission

Station: Stack_2_ESP_Sponge_Iron_2x100_TPD_DRI_3and4Kiln

Raigarh, Chhattisgarh

SL	Datentime	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(P M)	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(S O2)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(PM)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(SO2)
	00:00:00				
25	2022-11-26 00:00:00	20	NA	28.834	30.176
26	2022-11-27 00:00:00	NA	NA	28.758	30.215
27	2022-11-28 00:00:00	NA	NA	28.822	30.144
28	2022-11-29 00:00:00	NA	NA	28.853	30.163
29	2022-11-30 00:00:00	NA	NA	28.805	30.196
30	2022-12-01 00:00:00	NA	NA	43.1	19.2

Industry: M/s Scania Steels and Powers Limited (Formerly Known as Sidhi Vinayak Sponge Iron Pvt Ltd),

Industry Code: 08CG336 Industry Category: Steel & Iron Industry Type: Emission

Station: Stack_2_ESP_Sponge_Iron_2x100_TPD_DRI_3and4Kiln

Raigarh, Chhattisgarh

Range	0-500	0-250	0-100	0 0-	1000
Unit Limit Min Max Avg	mg/Nm3 100 20 20 20	mg/Nm3 -NA- 0 0 NAN	mg/Nm: 100 28.72 37.9 29.14	3 mg/ -NA 29.8 34.9 30.3	33 9
SL	Datentime	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(P M)	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(S O2)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(PM)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(SO2)
1	2022-12-02 00:00:00	NA	NA	28.788	30.164
2	2022-12-03 00:00:00	NA	NA	28.838	30.143
3	2022-12-04 00:00:00	NA	NA	28.821	30.177
4	2022-12-05 00:00:00	NA	NA	28.867	30.215
5	2022-12-06 00:00:00 2022-12-07	NA NA	NA NA	28.842 28.811	30.153 30.193
7	00:00:00	NA	NA	28.885	30.172
8	00:00:00 2022-12-09	NA	NA	28.827	30.126
9	00:00:00 2022-12-10 00:00:00	NA	NA	28.837	30.178
10	2022-12-11 00:00:00	NA	NA	28.819	30.179
11	2022-12-12 00:00:00	NA	NA	NA	NA

Industry: M/s Scania Steels and Powers Limited (Formerly Known as Sidhi Vinayak Sponge Iron Pvt Ltd),

Industry Code: 08CG336 Industry Category: Steel & Iron Industry Type: Emission

Station: Stack_2_ESP_Sponge_Iron_2x100_TPD_DRI_3and4Kiln

Raigarh, Chhattisgarh

SL	Datentime	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(P M)	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(S O2)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(PM)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(SO2)
12	2022-12-13 00:00:00	NA	NA	28.832	30.219
13	2022-12-14 00:00:00	NA	NA	28.825	30.122
14	2022-12-15 00:00:00	NA	NA	28.813	30.16
15	2022-12-16 00:00:00	20	NA	29.087	29.827
16	2022-12-17 00:00:00	NA	NA	28.931	30.127
17	2022-12-18 00:00:00	NA	NA	28.768	30.176
18	2022-12-19 00:00:00	NA	NA	28.909	30.18
19	2022-12-20 00:00:00	NA	NA	28.792	30.126
20	2022-12-21 00:00:00	NA	NA	28.827	30.085
21	2022-12-22 00:00:00	NA	NA	28.893	30.182
22	2022-12-23 00:00:00	NA	NA	28.716	30.12
23	2022-12-24 00:00:00	NA	NA	28.927	30.129
24	2022-12-25 00:00:00	NA	NA	28.833	30.124
25	2022-12-26 00:00:00	NA	NA	28.749	30.124

Industry: M/s Scania Steels and Powers Limited (Formerly Known as Sidhi Vinayak Sponge Iron Pvt Ltd),

Industry Code: 08CG336 Industry Category: Steel & Iron Industry Type: Emission

Station: Stack_2_ESP_Sponge_Iron_2x100_TPD_DRI_3and4Kiln

Raigarh, Chhattisgarh

SL	Datentime	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(P M)	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(S O2)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(PM)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(SO2)
26	2022-12-27 00:00:00	NA	NA	28.814	30.195
27	2022-12-28 00:00:00	NA	NA	28.889	30.212
28	2022-12-29 00:00:00	NA	NA	28.813	30.119
29	2022-12-30 00:00:00	NA	NA	28.797	30.164
30	2022-12-31 00:00:00	NA	NA	28.816	30.184
31	2023-01-01 00:00:00	NA	NA	37.9	34.9

Industry: M/s Scania Steels and Powers Limited (Formerly Known as Sidhi Vinayak Sponge Iron Pvt Ltd),

Industry Code: 08CG336 Industry Category: Steel & Iron Industry Type: Emission

Station: Stack_2_ESP_Sponge_Iron_2x100_TPD_DRI_3and4Kiln

Raigarh, Chhattisgarh

Range	0-500	0-250	0-1000	0-	1000
Unit Limit Min Max Avg	mg/Nm3 100 0 0 NAN	mg/Nm3 -NA- 0 0 NAN	mg/Nm3 100 28.76 28.91 28.84	3 mg/l -NA 30.0 30.2 30.1	8 2
SL	Datentime	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(P M)	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(S O2)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(PM)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(SO2)
1	2023-01-02 00:00:00	NA	NA	28.804	30.144
2	2023-01-03 00:00:00	NA	NA	28.832	30.163
3	2023-01-04 00:00:00	NA	NA	28.845	30.121
4	2023-01-05 00:00:00	NA	NA	28.822	30.137
5	2023-01-06 00:00:00	NA	NA	28.764	30.175
6	2023-01-07 00:00:00	NA	NA	28.821	30.141
7	2023-01-08 00:00:00	NA	NA	28.837	30.121
8	2023-01-09 00:00:00	NA	NA	28.824	30.117
9	2023-01-10 00:00:00	NA	NA	28.874	30.124
10	2023-01-11 00:00:00	NA	NA	28.906	30.077
11	2023-01-12 00:00:00	NA	NA	28.871	30.217

Industry: M/s Scania Steels and Powers Limited (Formerly Known as Sidhi Vinayak Sponge Iron Pvt Ltd),

Industry Code: 08CG336 Industry Category: Steel & Iron Industry Type: Emission

Station: Stack_2_ESP_Sponge_Iron_2x100_TPD_DRI_3and4Kiln

Raigarh, Chhattisgarh

SL	Datentime	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(P M)	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(S O2)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(PM)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(SO2)
12	2023-01-13 00:00:00	NA	NA	NA	NA
13	2023-01-14 00:00:00	NA	NA	NA	NA
14	2023-01-15 00:00:00	NA	NA	NA	NA
15	2023-01-16 00:00:00	NA	NA	NA	NA
16	2023-01-17 00:00:00	NA	NA	NA	NA
17	2023-01-18 00:00:00	NA	NA	NA	NA
18	2023-01-19 00:00:00	NA	NA	NA	NA
19	2023-01-20 00:00:00	NA	NA	NA	NA
20	2023-01-21 00:00:00	NA	NA	NA	NA
21	2023-01-22 00:00:00	NA	NA	NA	NA
22	2023-01-23 00:00:00	NA	NA	NA	NA
23	2023-01-24 00:00:00	NA	NA	NA	NA
24	2023-01-25 00:00:00	NA	NA	NA	NA
25	2023-01-26 00:00:00	NA	NA	NA	NA

Industry: M/s Scania Steels and Powers Limited (Formerly Known as Sidhi Vinayak Sponge Iron Pvt Ltd),

Industry Code: 08CG336 Industry Category: Steel & Iron Industry Type: Emission

Station: Stack_2_ESP_Sponge_Iron_2x100_TPD_DRI_3and4Kiln

Raigarh, Chhattisgarh

SL	Datentime	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(P M)	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(S O2)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(PM)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(SO2)
26	2023-01-27 00:00:00	NA	NA	NA	NA
27	2023-01-28 00:00:00	NA	NA	NA	NA
28	2023-01-29 00:00:00	NA	NA	NA	NA
29	2023-01-30 00:00:00	NA	NA	NA	NA
30	2023-01-31 00:00:00	NA	NA	NA	NA
31	2023-02-01 00:00:00	NA	NA	NA	NA

Industry: M/s Scania Steels and Powers Limited (Formerly Known as Sidhi Vinayak Sponge Iron Pvt Ltd),

Industry Code: 08CG336 Industry Category: Steel & Iron Industry Type: Emission

Station: Stack_2_ESP_Sponge_Iron_2x100_TPD_DRI_3and4Kiln

Raigarh, Chhattisgarh

Range	0-500	0-250	0-100	0 0-	1000
Unit Limit Min Max Avg	mg/Nm3 100 23.88 33.97 27.62	mg/Nm3 -NA- 24.49 32.9 31.96	mg/Nm3 100 10.9 29.04 28.15	3 mg/ -NA 21.9 31.0 29.8))4
SL	Datentime	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(P M)	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(S O2)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(PM)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(SO2)
1	2023-02-02 00:00:00	NA	NA	NA	NA
2	2023-02-03 00:00:00	23.881	24.487	27.848	31.045
3	2023-02-04 00:00:00	27.53	32.769	28.744	30.044
4	2023-02-05 00:00:00	27.456	32.345	28.826	30.146
5	2023-02-06 00:00:00	27.441	32.597	28.852	30.159
6	2023-02-07 00:00:00	27.576	32.667	28.786	30.116
7	2023-02-08 00:00:00	27.74	32.257	28.834	30.103
8	2023-02-09 00:00:00	27.823	32.412	28.715	30.082
9	2023-02-10 00:00:00	27.153	31.418	29.036	30.131
10	2023-02-11 00:00:00	27.423	32.832	28.807	30.165
11	2023-02-12 00:00:00	27.599	32.629	28.815	30.178

Industry: M/s Scania Steels and Powers Limited (Formerly Known as Sidhi Vinayak Sponge Iron Pvt Ltd),

Industry Code: 08CG336 Industry Category: Steel & Iron Industry Type: Emission

Station: Stack_2_ESP_Sponge_Iron_2x100_TPD_DRI_3and4Kiln

Raigarh, Chhattisgarh

SL	Datentime	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(P M)	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(S O2)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(PM)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(SO2)
12	2023-02-13 00:00:00	27.484	32.44	28.819	30.178
13	2023-02-14 00:00:00	27.604	32.335	28.821	30.098
14	2023-02-15 00:00:00	27.435	32.426	28.695	30.207
15	2023-02-16 00:00:00	27.619	32.525	28.89	30.112
16	2023-02-17 00:00:00	27.606	32.289	28.813	30.139
17	2023-02-18 00:00:00	27.484	32.898	28.841	30.172
18	2023-02-19 00:00:00	27.636	32.43	28.838	30.163
19	2023-02-20 00:00:00	27.43	32.534	28.825	30.142
20	2023-02-21 00:00:00	27.546	32.556	28.863	30.163
21	2023-02-22 00:00:00	27.567	32.746	28.779	30.109
22	2023-02-23 00:00:00	27.491	32.342	28.849	30.145
23	2023-02-24 00:00:00	27.5	32.375	28.854	30.232
24	2023-02-25 00:00:00	27.587	32.32	28.833	30.148
25	2023-02-26 00:00:00	27.428	32.267	28.833	30.128

Industry: M/s Scania Steels and Powers Limited (Formerly Known as Sidhi Vinayak Sponge Iron Pvt Ltd),

Industry Code: 08CG336 Industry Category: Steel & Iron Industry Type: Emission

Station: Stack_2_ESP_Sponge_Iron_2x100_TPD_DRI_3and4Kiln

Raigarh, Chhattisgarh

SL	Datentime	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(P M)	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(S O2)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(PM)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(SO2)
26	2023-02-27 00:00:00	27.495	32.506	28.842	30.14
27	2023-02-28 00:00:00	27.564	32.595	28.857	30.197
28	2023-03-01 00:00:00	27.35	32.333	28.794	30.128
29	2023-03-02 00:00:00	33.966	26.509	10.9	21.9

Industry: M/s Scania Steels and Powers Limited (Formerly Known as Sidhi Vinayak Sponge Iron Pvt Ltd),

Industry Code: 08CG336 Industry Category: Steel & Iron Industry Type: Emission

Station: Stack_2_ESP_Sponge_Iron_2x100_TPD_DRI_3and4Kiln

Raigarh, Chhattisgarh

	Stack_1_ESP_Spor n2x100_TPD_DRI_I _2(PM)		SP_Sponge_Iro D_DRI_Kiln_1		ESP_Sponge_Iro TPD_DRI_3and	Stack_2_ESP_Sponge_Iro n_2x100_TPD_DRI_3and 4Kiln(SO2)
Range	0-500	0-250		0-1000		0-1000
Unit	mg/Nm3	mg/Nm3		mg/Nm	3	mg/Nm3
Limit	100	-NA-		100		-NA-
Min	27.31	32.24		28.73		30.09
Max	27.76	36.86		37.1		40.3
Avg	27.54	32.69		29.1		30.5
SL	Datentime	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(P M)	Stack_1_ES nge_Iron2x D_DRI_Kiln O2)	100_TP _1_2(S	Stack_2_ESP_Spr nge_Iron_2x100_7 PD_DRI_3and4Kil n(PM)	nge_Iron_2x100_T
1	2023-03-02 00:00:00	27.502	32.441		28.888	30.144
2	2023-03-03 00:00:00	27.755	32.617		28.805	30.167
3	2023-03-04 00:00:00	27.369	32.595		28.771	30.117
4	2023-03-05 00:00:00	27.505	32.507		28.813	30.15
5	2023-03-06 00:00:00	27.468	32.359		28.787	30.164
6	2023-03-07 00:00:00	27.598	32.266		28.735	30.106
7	2023-03-08 00:00:00	27.533	32.241		28.776	30.139
8	2023-03-09 00:00:00	27.586	32.668		28.865	30.152
9	2023-03-10 00:00:00	27.51	32.354		28.916	30.182

Industry: M/s Scania Steels and Powers Limited (Formerly Known as Sidhi Vinayak Sponge Iron Pvt Ltd),

Industry Code: 08CG336 Industry Category: Steel & Iron Industry Type: Emission

Station: Stack_2_ESP_Sponge_Iron_2x100_TPD_DRI_3and4Kiln

Raigarh, Chhattisgarh

SL	Datentime	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(P M)	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(S O2)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(PM)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(SO2)
10	2023-03-11 00:00:00	27.741	32.833	28.738	30.266
11	2023-03-12 00:00:00	27.523	32.275	28.861	30.117
12	2023-03-13 00:00:00	27.62	32.605	28.798	30.144
13	2023-03-14 00:00:00	27.553	32.608	28.856	30.134
14	2023-03-15 00:00:00	27.603	32.28	28.86	30.181
15	2023-03-16 00:00:00	27.747	32.486	28.861	30.157
16	2023-03-17 00:00:00	27.464	32.744	28.821	30.154
17	2023-03-18 00:00:00	27.506	32.549	28.888	30.18
18	2023-03-19 00:00:00	27.518	32.468	28.833	30.158
19	2023-03-20 00:00:00	27.534	32.646	28.837	30.209
20	2023-03-21 00:00:00	27.365	32.655	28.808	30.151
21	2023-03-22 00:00:00	27.508	32.552	28.835	30.266
22	2023-03-23 00:00:00	27.656	32.814	28.801	30.137
23	2023-03-24 00:00:00	27.504	32.313	28.814	30.195

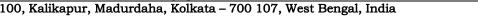
Industry: M/s Scania Steels and Powers Limited (Formerly Known as Sidhi Vinayak Sponge Iron Pvt Ltd),

Industry Code: 08CG336 Industry Category: Steel & Iron Industry Type: Emission

Station: Stack_2_ESP_Sponge_Iron_2x100_TPD_DRI_3and4Kiln

Raigarh, Chhattisgarh

SL	Datentime	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(P M)	Stack_1_ESP_Spo nge_Iron2x100_TP D_DRI_Kiln_1_2(S O2)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(PM)	Stack_2_ESP_Spo nge_Iron_2x100_T PD_DRI_3and4Kil n(SO2)
24	2023-03-25 00:00:00	27.538	32.421	28.889	30.118
25	2023-03-26 00:00:00	27.374	32.779	28.849	30.17
26	2023-03-27 00:00:00	27.529	32.622	28.795	30.129
27	2023-03-28 00:00:00	27.313	32.854	28.915	30.174
28	2023-03-29 00:00:00	27.593	32.785	28.777	30.093
29	2023-03-30 00:00:00	27.575	32.471	28.851	30.154
30	2023-03-31 00:00:00	27.671	36.862	37.1	40.3


ANNEXURE-3

Ambient Air Quality Monitoring Report (October, 2022 to March, 2023)

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata − 700 107, West Bengal, India

2 − +91 33 2443 8127/8128; +91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

		ANX-3
Name of Industry	M/s. Scania Steels & Powers Ltd.	
	(Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)	
Address	22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011	

AMBIENT AIR QUALITY MONITORING REPORT

TABLE: - I						
Onsite Ambient Air Quality Monitoring Results Location Project Site						
(Period: October, 2022 To March, 2023)						
DATE	PM ₁₀	PM _{2.5}	SO ₂	NO ₂		
	(µg/m3)	(µg/m3)	(μg/m3)	(µg/m3)		
04.10.2022	87	39	12	30		
07.10.2022	70	32	15	23		
11.10.2022	78	37	17	35		
14.10.2022	73	34	13	24		
18.10.2022	84	38	16	31		
21.10.2022	92	44	15	27		
25.10.2022	79	38	19	22		
28.10.2022	71	31	12	29		
01.11.2022	94	46	14	34		
04.11.2022	89	41	19	25		
08.11.2022	83	37	13	22		
11.11.2022	78	31	17	28		
15.11.2022	91	43	14	26		
18.11.2022	97	47	19	31		
22.11.2022	82	34	15	37		
25.11.2022	97	48	17	28		
02.12.2022	85	40	13	23		
06.12.2022	90	43	18	41		
09.12.2022	81	37	15	26		
13.12.2022	91	45	12	34		
16.12.2022	96	46	16	37		
20.12.2022	78	35	18	31		
23.12.2022	85	40	15	34		
27.12.2022	91	44	12	29		
29.12.2022	70	32	21	22		
03.01.2023	77	35	16	28		
06.01.2023	97	47	14	31		

Cont.....

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India
- Laboratory Recognized by WBPCB
- Accredited EIA Consultant by QCI-NABET

ANX-3

TABLE: - I **Onsite Ambient Air Quality Monitoring Results Project Site** (Period: October, 2022 To March, 2023) **DATE** PM_{10} PM_{2.5} NO_2 SO_2 $(\mu g/m3)$ $(\mu g/m3)$ $(\mu g/m3)$ $(\mu g/m3)$ 10.01.2023 13.01.2023 17.01.2023 20.01.2023 24.01.2023 27.01.2023 01.02.2023 04.02.2023 08.02.2023 11.02.2023 15.02.2023 18.02.2023 22.02.2023 25.02.2023 01.03.2023 04.03.2023 08.03.2023 11.03.2023 15.03.2023 18.03.2023 22.03.2023 25.03.2023 29.03.2023

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

ANX-3

Name of Industry	M/s. Scaania Steels & Powers Ltd.
	(Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)
Address	22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011

AMBIENT AIR QUALITY MONITORING REPORT

	O	TABLE: - 2					
	Unsite Ambiei Location	nt Air Quality Moi Samaruma Villa	O				
	(Period: October, 2022 To March, 2023)						
DATE	PM ₁₀	PM _{2.5}	SO ₂	NO ₂			
	(μg/m ³)	(μg/m ³)	$(\mu g/m^3)$	$(\mu g/m^3)$			
04.10.2022	78	37	8	23			
07.10.2022	61	26	13	18			
11.10.2022	66	30	12	26			
14.10.2022	79	37	10	19			
18.10.2022	71	31	9	24			
21.10.2022	65	30	12	18			
25.10.2022	76	35	8	26			
28.10.2022	60	27	11	20			
01.11.2022	66	30	12	17			
04.11.2022	77	37	9	21			
08.11.2022	63	25	10	23			
11.11.2022	72	33	8	18			
15.11.2022	70	31	10	21			
18.11.2022	81	39	9	18			
22.11.2022	68	31	12	26			
25.11.2022	85	42	9	22			
02.12.2022	70	32	13	16			
06.12.2022	83	39	11	27			
09.12.2022	64	28	14	24			
13.12.2022	79	36	13	20			
16.12.2022	75	33	10	17			
20.12.2022	87	42	13	22			
23.12.2022	68	29	11	26			
27.12.2022	77	35	8	18			
29.12.2022	70	32	10	25			
03.01.2023	65	28	12	16			

Cont.....

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

15.03.2023

18.03.2023

22.03.2023

25.03.2023

29.03.2023

ANX-3

TABLE: - 2 Onsite Ambient Air Quality Monitoring Results Location Samaruma Village (Period: October, 2022 To March, 2023)						
DATE	PM ₁₀	PM _{2.5}	SO ₂	NO ₂		
	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$		
06.01.2023	72	34	11	20		
10.01.2023	62	27	9	22		
13.01.2023	72	32	12	24		
17.01.2023	83	39	11	31		
20.01.2023	70	32	15	24		
24.01.2023	63	28	9	27		
27.01.2023	74	35	10	20		
01.02.2023	67	30	12	26		
04.02.2023	75	35	8	22		
08.02.2023	70	33	12	24		
11.02.2023	63	26	10	19		
15.02.2023	77	37	9	28		
18.02.2023	83	39	13	21		
22.02.2023	67	28	10	30		
25.02.2023	72	33	12	24		
01.03.2023	69	30	9	18		
04.03.2023	75	35	10	23		
08.03.2023	63	28	14	21		
11.03.2023	73	34	12	26		

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

Laboratory Recognized by MoEF&CC, Govt. of India

Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata − 700 107, West Bengal, India

2 − +91 33 2443 8127/8128; +91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

ANX-3

Name of Industry	M/s. Scania Steels & Powers Ltd. (Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)
Address	22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011

AMBIENT AIR QUALITY MONITORING REPORT

TABLE: -3											
Onsite Ambient Air Quality Monitoring Results Location Parkipahari Village											
(Period: October, 2022 To March, 2023)											
DATE	PM ₁₀	PM _{2.5}	SO ₂	NO ₂							
	(μg/m³)	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$							
04.10.2022	70	33	9	19							
07.10.2022	61	27	7	14							
11.10.2022	67	31	10	20							
14.10.2022	58	23	8	15							
18.10.2022	61	27	11	26							
21.10.2022	70	32	9	18							
25.10.2022	64	25	7	21							
28.10.2022	57	21	10	16							
01.11.2022	60	27	9	20							
04.11.2022	71	33	13	17							
08.11.2022	63	25	10	25							
11.11.2022	59	24	12	14							
15.11.2022	73	33	7	20							
18.11.2022	69	30	13	13							
22.11.2022	76	35	9	25							
25.11.2022	57	22	10	16							
02.12.2022	61	26	8	23							
06.12.2022	69	30	7	19							
09.12.2022	63	27	10	26							
13.12.2022	80	37	10	23							
16.12.2022	75	33	8	29							
20.12.2022	65	28	16	21							
23.12.2022	58	21	12	28							
27.12.2022	70	32	9	19							
29.12.2022	61	24	8	25							
03.01.2023	82	38	13	30							
06.01.2023	62	23	7 Cons	19							

Cont.....

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata − 700 107, West Bengal, India

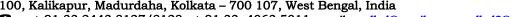
2 − +91 33 2443 8127/8128; +91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

ANX-3

TABLE: -3 **Onsite Ambient Air Quality Monitoring Results** Parkipahari Village

(Period: October, 2022 To March, 2023)										
DATE	PM ₁₀	PM _{2.5}	SO ₂	NO ₂						
	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	(μg/m³)						
10.01.2023	78	37	8	22						
13.01.2023	61	22	9	20						
17.01.2023	67	30	7	17						
20.01.2023	62	27	8	25						
24.01.2023	70	32	9	21						
27.01.2023	61	23	7	17						
01.02.2023	72	34	11	24						
04.02.2023	60	23	9	20						
08.02.2023	69	31	7	25						
11.02.2023	77	35	8	14						
15.02.2023	70	29	10	16						
18.02.2023	79	36	8	22						
22.02.2023	67	29	9	18						
25.02.2023	77	36	11	14						
01.03.2023	65	26	8	19						
04.03.2023	74	34	9	25						
08.03.2023	69	33	7	17						
11.03.2023	66	30	10	19						
15.03.2023	78	35	8	14						
18.03.2023	69	30	7	22						
22.03.2023	65	28	13	19						
25.03.2023	77	35	9	16						
29.03.2023	68	30	14	23						

For ENVIROTECH EAST (P) LTD.



An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata − 700 107, West Bengal, India

2 − +91 33 2443 8127/8128; +91 33 4063 5011; email: eeplkol@gmail.com; eeplkol@gmail.com; cIN NO: U74210WB1989PTC047403

Name of Industry	M/s. Scania Steels & Powers Ltd.
	(Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)
Address	22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011

AMBIENT AIR QUALITY MONITORING REPORT

TABLE: - 4											
	Onsite Ambient Air Quality Monitoring Results Location Punjipatra Village										
(Period: October, 2022 To March, 2023)											
DATE	PM ₁₀	PM _{2.5}	SO ₂	NO ₂							
	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$							
04.10.2022	89	42	15	26							
07.10.2022	81	36	12	32							
11.10.2022	86	41	9	18							
14.10.2022	73	34	11	20							
18.10.2022	66	31	14	31							
21.10.2022	89	44	12	19							
25.10.2022	77	35	10	28							
28.10.2022	88	40	11	34							
01.11.2022	83	37	9	30							
04.11.2022	91	44	13	25							
08.11.2022	74	33	10	37							
11.11.2022	80	38	14	27							
15.11.2022	76	35	13	26							
18.11.2022	67	29	9	20							
22.11.2022	80	38	14	24							
25.11.2022	64	28	13	21							
02.12.2022	76	35	17	27							
06.12.2022	72	34	15	19							
09.12.2022	95	47	14	30							
13.12.2022	78	35	16	25							
16.12.2022	75	32	12	37							
20.12.2022	85	40	14	23							
23.12.2022	74	34	22	27							
27.12.2022	83	40	16	20							
29.12.2022	77	36	12	30							
03.01.2023	70	32	14	22							

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

29.03.2023

86

ANX-3

TABLE: -4 Onsite Ambient Air Quality Monitoring Results Location Punjipatra Village (Period: October, 2022 To March, 2023)										
DATE	PM ₁₀	PM _{2.5}	SO ₂	NO ₂						
	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$						
06.01.2023	94	45	13	19						
10.01.2023	76	35	15	37						
13.01.2023	67	29	20	21						
17.01.2023	82	39	16	18						
20.01.2023	75	34	13	32						
24.01.2023	80	38	18	25						
27.01.2023	68	30	23	19						
01.02.2023	91	44	10	26						
04.02.2023	70	32	12	21						
08.02.2023	84	39	9	32						
11.02.2023	71	32	11	19						
15.02.2023	65	28	10	23						
18.02.2023	73	34	12	37						
22.02.2023	94	46	14	24						
25.02.2023	76	34	13	18						
01.03.2023	81	37	19	25						
04.03.2023	66	30	15	21						
08.03.2023	70	34	13	26						
11.03.2023	78	37	12	20						
15.03.2023	68	32	16	27						
18.03.2023	81	39	18	32						
22.03.2023	90	43	13	19						
25.03.2023	69	31	19	29						
20 02 2022	0.0	40	4.5	0.4						

40

For ENVIROTECH EAST (P) LTD.

15

24

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

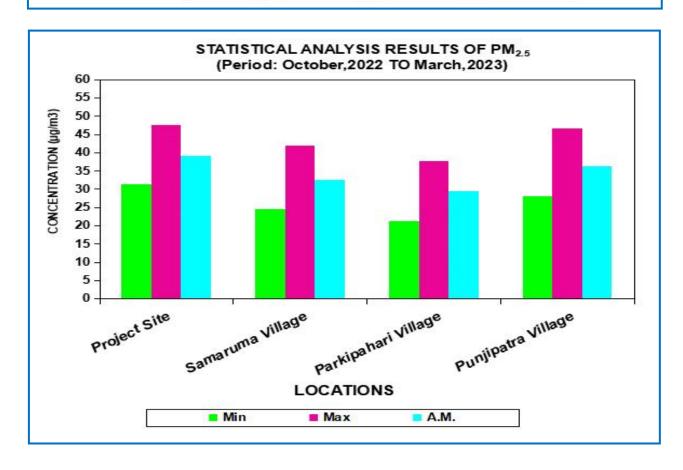
100, Kalikapur, Madurdaha, Kolkata − 700 107, West Bengal, India

2 − +91 33 2443 8127/8128; +91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

ANX-3

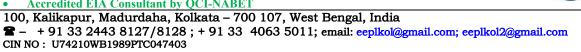
Table 1		Statistical Analysis of Pollutants						
	Table 1	(Period: October, 2022 To March, 2023)						
Pollutants	Locations	MES	Min	Max	A.M.	P - 98		
	Project Site	50	70	97	84.1	97.0		
DM	Samaruma Village	50	60	87	71.4	85.0		
PM ₁₀ (μg/m ³)	Parkipahari Village	50	57	82	67.7	80.0		
	Punjipatra Village	50	64	95	78.1	94.0		
	Overall	200	57	97	75.3	-		
	Project Site	50	31	48	38.9	47.5		
D15	Samaruma Village	50	25	42	32.5	41.7		
PM _{2.5} (μg/m ³)	Parkipahari Village	50	21	38	29.5	36.8		
(18)	Punjipatra Village	50	28	47	36.2	46.1		
	Overall	200	21	48	34.3	-		
	Project Site	50	12	21	15.5	21.0		
0.0	Samaruma Village	50	8	15	10.8	14.0		
SO_2 (µg/m ³)	Parkipahari Village	50	7	16	9.4	14.0		
	Punjipatra Village	50	9	23	13.8	22.0		
	Overall	200	7	23	12.4	-		
	Project Site	50	22	41	29.5	41.0		
NO	Samaruma Village	50	16	31	22.7	31.0		
NO ₂ (μg/m ³)	Parkipahari Village	50	13	30	20.2	29.0		
,	Punjipatra Village	50	18	37	25.4	37.0		
	Overall	200	13	41	24.5	-		

For ENVIROTECH EAST (P) LTD.

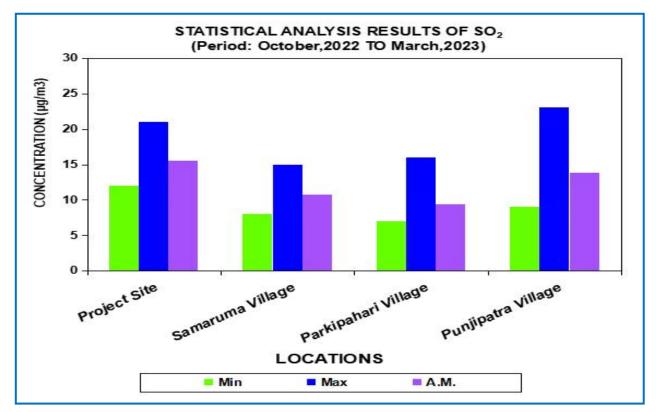

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

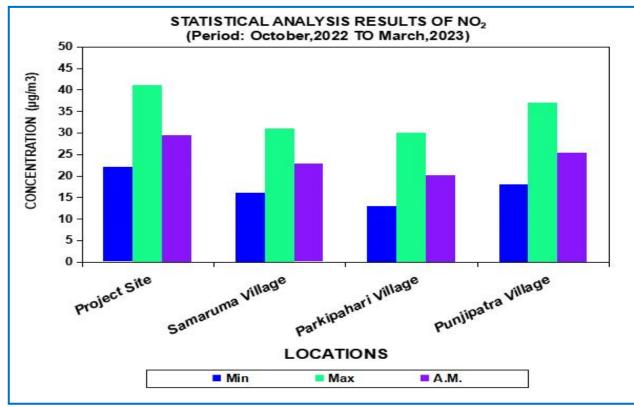
- Laboratory Recognized by MoEF&CC, Govt. of India
- Laboratory Recognized by WBPCB
- Accredited EIA Consultant by QCI-NABET

STATISTICAL ANALYSIS RESULTS OF PM₁₀ (Period: October,2022 TO March,2023) 100 90 CONCENTRATION (µg/m3) 80 70 60 50 40 30 20 10 0 Samaruma Village Parkipahari Village Punjipatra Village Project Site LOCATIONS Min Max A.M.



ANX-3


An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company


- Laboratory Recognized by MoEF&CC, Govt. of India
- Laboratory Recognized by WBPCB
- Accredited EIA Consultant by QCI-NABET

ANX-3

For ENVIROTECH EAST (P) LTD.

Real Time Data Acquisition And Monitoring

Site Name: M/s Scania Steels & Powers Limited (Formerly Known as Sidhi Vinayak Sponge Iron Pvt Ltd)

Report: Average Report

From Date: 11-11-2022T17:08:48Z To Date: 12-11-2022T17:09:09Z

Description	AAQMS_1- CO(mg/m3)	AAQMS_1- NO(ug/m3)	AAQMS_1- NO2(ug/m3)	AAQMS_1- NOx(ug/m3)	AAQMS_1- PM2.5(ug/m3)	AAQMS_1- PM10(ug/m3)	AAQMS_1- SO2(ug/m3)
Prescribed Standards	0 - 4	0 - 80	0 - 80	0 - 80	0 - 60	0 - 100	0 - 80
Maximum Data	1.14	3.35	2.23	6.19	33.29	61.04	29.52
Minimum Data	0.62	2.99	2.04	5.81	10.73	19.68	22.01
Geometric Mean	0.82	3.26	2.11	6.08	20.49	37.56	23.74
Median	8.0	3.32	2.1	6.12	20.34	37.28	22.73
Standard Deviation	0.12	0.11	0.05	0.11	6.33	11.6	2.2
Maximum Value At Time	2022-10-06 00:00:00	2022-10-14 00:00:00	2022-10-23 00:00:00	2022-10-21 00:00:00	2022-10-30 00:00:00	2022-10-30 00:00:00	2022-10-01 00:00:00
Minimum Value At Time	2022-10-11 00:00:00	2022-10-01 00:00:00	2022-10-04 00:00:00	2022-10-01 00:00:00	2022-10-04 00:00:00	2022-10-04 00:00:00	2022-10-30 00:00:00
Valid Data Points	30	30	30	30	30	30	30
Total Data Points	30	30	30	30	30	30	30
Data Availability %	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

SI No.	Time	AAQMS_1- CO(mg/m3)	AAQMS_1- NO(ug/m3)	AAQMS_1- NO2(ug/m3)	AAQMS_1- NOx(ug/m3)	AAQMS_1- PM2.5(ug/m3)	AAQMS_1- PM10(ug/m3)	AAQMS_1- SO2(ug/m3)
1	2022-10-01 00:00:00	0.73	2.99	2.21	5.81	11.79	21.61	29.52
2	2022-10-02 00:00:00	0.79	3.03	2.20	5.85	20.31	37.24	28.31
3	2022-10-03 00:00:00	0.66	3.29	2.11	6.12	14.87	27.26	22.43
4	2022-10-04 00:00:00	0.84	3.34	2.04	6.12	10.73	19.68	22.64
5	2022-10-05 00:00:00	0.86	3.32	2.11	6.15	12.52	22.97	22.76
6	2022-10-06 00:00:00	1.14	3.29	2.11	6.11	15.14	27.76	22.68
7	2022-10-07 00:00:00	0.82	3.29	2.09	6.10	12.97	23.78	22.97
8	2022-10-08 00:00:00	0.99	3.33	2.11	6.16	20.26	37.12	22.85

SI No.	Time	AAQMS_1- CO(mg/m3)	AAQMS_1- NO(ug/m3)	AAQMS_1- NO2(ug/m3)	AAQMS_1- NOx(ug/m3)	AAQMS_1- PM2.5(ug/m3)	AAQMS_1- PM10(ug/m3)	AAQMS_1- SO2(ug/m3)
9	2022-10-09 00:00:00	1.05	3.33	2.12	6.17	20.12	36.89	23.04
10	2022-10-10 00:00:00	0.86	3.26	2.15	6.11	17.94	32.88	23.76
11	2022-10-11 00:00:00	0.62	3.32	2.07	6.11	15.67	28.73	22.62
12	2022-10-12 00:00:00	0.70	3.34	2.08	6.16	13.40	24.59	22.31
13	2022-10-13 00:00:00	0.62	3.32	2.10	6.14	12.47	22.87	23.08
14	2022-10-14 00:00:00	0.71	3.35	2.06	6.14	24.61	45.37	22.62
15	2022-10-15 00:00:00	0.80	3.34	2.06	6.15	20.36	37.33	22.66
16	2022-10-16 00:00:00	0.84	3.29	2.12	6.13	28.45	52.12	23.10
17	2022-10-17 00:00:00	0.84	3.35	2.05	6.14	20.41	37.43	22.97
18	2022-10-18 00:00:00	0.75	3.34	2.06	6.14	23.26	42.63	22.70
19	2022-10-19 00:00:00	0.75	3.33	2.10	6.16	24.52	44.96	22.68
20	2022-10-20 00:00:00	0.88	3.32	2.08	6.13	25.73	47.14	22.68
21	2022-10-21 00:00:00	0.76	3.35	2.10	6.19	22.28	40.84	22.62
22	2022-10-22 00:00:00	0.81	3.16	2.13	5.98	21.97	40.28	25.48
23	2022-10-23 00:00:00	0.78	3.01	2.23	5.85	17.53	32.13	29.22
24	2022-10-24 00:00:00	0.77	3.03	2.18	5.83	16.09	29.50	28.19
25	2022-10-25 00:00:00	0.80	3.13	2.17	5.95	20.60	37.80	25.38
26	2022-10-26 00:00:00	0.85	3.21	2.14	6.04	29.27	53.66	24.62
27	2022-10-27 00:00:00	0.80	3.31	2.08	6.12	26.45	48.31	22.11
28	2022-10-28 00:00:00	0.91	3.31	2.12	6.15	28.41	52.09	22.04
29	2022-10-29 00:00:00	1.06	3.33	2.04	6.11	33.17	60.82	22.18
30	2022-10-30 00:00:00	0.96	3.32	2.07	6.12	33.29	61.04	22.01

Report Details: MSSPLS | 2022-11-12 17:09:52 | Average Report

Real Time Data Acquisition And Monitoring

Site Name: M/s Scania Steels & Powers Limited (Formerly Known as Sidhi Vinayak Sponge Iron Pvt Ltd) Report: Custom Report From Date: 2022/12/01 00:00:00 To Date: 2023/01/31 23:59:55

	From Date: 2022/12/01 00:00:00 To Date : 2023/01/31 23:59:55											
Description	AAQMS_1-PM10 - (ug/m3) Raw	AAQMS_1-PM2.5 - (ug/m3) Raw	AAQMS_1-SO2 - (ug/m3) Raw	AAQMS_1-NO - (ug/m3) Raw	AAQMS_1-NO2 - (ug/m3) Raw	AAQMS_1-NOx - (ug/m3) Raw	AAQMS_1-CO - (mg/m3) Raw					
Prescribed Standards	0 - 100	0 - 60	0 - 80	0 - 80	0 - 80	0 - 80	0 - 4					
Maximum Data	108.32	56.85	31.13	3.2	2.29	6.03	1.62					
Minimum Data	2.75	1.5	25.99	2.96	2.1	5.81	0.78					
Geometric Mean	55.66	28.42	28.06	3.09	2.18	5.91	1.11					
Median	56.64	28.28	27.85	3.09	2.18	5.91	1.08					
Standard Deviation	23.55	12.79	1.3	0.06	0.04	0.06	0.21					
Maximum Value At Time	2023-01-20	2023-01-03	2023-01-26	2023-01-15	2023-01-29	2023-01-19	2023-01-23					
Minimum Value At Time	2023-01-14	2023-01-14	2022-12-09	2023-01-29	2023-01-15	2023-01-26	2022-12-15					
Valid Data Points	62	62	62	62	62	62	62					
Total Data Points	62	62	62	62	62	62	62					
Data Availability %	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%					

	Total Data Points Data Availability %	62 100.0%	62 100.0%	62 100.0%	62 100.0%	62 100.0%	62	62 100.0%
	,							
SI No	Time	AAQMS_1-PM10 - (ug/m3) Raw	AAQMS_1-PM2.5 - (ug/m3) Raw	AAQMS_1-SO2 - (ug/m3) Raw	AAQMS_1-NO - (ug/m3) Raw	AAQMS_1-NO2 - (ug/m3) Raw	AAQMS_1-NOx - (ug/m3) Raw	AAQMS_1-CO - (mg/m3) Raw
1	2022-12-01	64.91	35.41	27.81	3.08	2.19	5.91	1.05
2	2022-12-02	75.59	41.23	28.33	3.10	2.17	5.91	1.09
3	2022-12-03	77.41	42.22	27.83	3.08	2.14	5.86	1.05
4	2022-12-04	73.38	40.03	28.03	3.09	2.18	5.92	1.02
5	2022-12-05	55.96 56.66	30.52 30.90	27.99 27.60	3.07	2.21	5.91	0.93
7	2022-12-06 2022-12-07	53.06	28.94	27.52	3.09 3.10	2.18 2.18	5.91 5.93	0.93 0.89
8	2022-12-07	65.17	35.55	26.71	3.13	2.14	5.93	0.99
9	2022-12-09	69.48	37.90	25.99	3.13	2.19	5.98	1.05
10	2022-12-10	65.62	35.79	27.08	3.13	2.15	5.94	1.22
11	2022-12-11	92.29	50.34	27.32	3.13	2.14	5.93	1.27
12	2022-12-12	65.98	35.99	28.31	3.07	2.18	5.89	1.16
13	2022-12-13	50.14	27.34	29.53	3.00	2.25	5.85	0.90
14	2022-12-14	36.33	19.82	29.92	3.02	2.20	5.84	0.80
15	2022-12-15	34.13	18.64	30.24	2.97	2.27	5.84	0.78
16	2022-12-16	35.33	19.26	29.78	3.02	2.21	5.85	0.82
17	2022-12-17	42.68 49.91	23.28	28.11 27.24	3.05	2.21	5.89	0.84
18 19	2022-12-18 2022-12-19	52.80	27.22 28.80	26.46	3.10 3.13	2.15 2.15	5.90 5.95	0.92 0.91
20	2022-12-19	48.01	26.18	27.01	3.08	2.17	5.89	0.90
21	2022-12-21	48.53	26.47	26.81	3.09	2.20	5.93	0.91
22	2022-12-22	58.40	31.86	27.36	3.13	2.18	5.96	1.07
23	2022-12-23	64.21	35.02	28.25	3.08	2.14	5.87	1.11
24	2022-12-24	73.35	40.01	28.32	3.06	2.22	5.91	1.33
25	2022-12-25	70.60	38.50	28.33	3.05	2.21	5.89	1.31
26	2022-12-26	64.62	35.25	28.82	3.03	2.16	5.83	1.38
27	2022-12-27	69.45	37.89	29.18	3.03	2.22	5.87	1.18
28	2022-12-28	48.27	26.33	29.95	3.01	2.23	5.85	0.88
29 30	2022-12-29 2022-12-30	39.78 61.24	21.68 33.41	28.32 27.88	3.04 3.11	2.23 2.17	5.89 5.93	0.86 1.13
31	2022-12-31	56.05	30.58	27.93	3.06	2.18	5.88	1.09
32	2023-01-01	54.37	29.66	28.30	3.07	2.20	5.92	0.96
33	2023-01-02	79.28	43.26	28.39	3.09	2.16	5.91	1.15
34	2023-01-03	104.22	56.85	27.33	3.10	2.18	5.93	1.39
35	2023-01-04	96.29	52.50	27.00	3.12	2.15	5.94	1.37
36	2023-01-05	94.86	51.73	27.54	3.09	2.19	5.94	1.43
37	2023-01-06	56.63	30.88	27.10	3.12	2.17	5.96	0.99
38	2023-01-07	36.10	19.69	26.26	3.16	2.16	6.00	0.81
39 40	2023-01-08 2023-01-09	40.41 35.20	22.04 19.20	26.01 26.45	3.18 3.16	2.16 2.16	6.02 5.99	0.82 0.91
41	2023-01-10	32.97	17.98	26.87	3.11	2.16	5.93	0.89
42	2023-01-11	51.33	28.00	27.30	3.10	2.19	5.93	0.96
43	2023-01-12	90.76	49.50	27.38	3.10	2.20	5.94	1.41
44	2023-01-13	18.30	9.98	26.74	3.17	2.15	5.98	1.34
45	2023-01-14	2.75	1.50	26.82	3.17	2.14	5.99	1.16
46	2023-01-15	2.75	1.50	27.43	3.20	2.10	6.00	1.01
47	2023-01-16	2.75	1.50	27.03	3.17	2.11	5.97	1.02
48	2023-01-17	2.75	1.50	26.62	3.18	2.16	6.00	1.23
49	2023-01-18	2.75	1.50	26.90	3.20	2.10	6.00	1.20
50 51	2023-01-19 2023-01-20	55.38 108.32	30.21 52.05	26.97 28.38	3.20 3.17	2.13 2.12	6.03 5.97	1.27 1.40
52	2023-01-21	76.14	28.55	29.12	3.06	2.22	5.90	1.41
53	2023-01-22	67.06	25.16	27.96	3.05	2.23	5.91	1.52
54	2023-01-23	60.22	22.58	27.83	3.05	2.21	5.88	1.62
55	2023-01-24	56.51	21.19	28.97	3.04	2.19	5.85	1.28
56	2023-01-25	57.13	21.42	30.16	3.01	2.23	5.86	1.49
57	2023-01-26	65.80	24.66	31.13	3.01	2.19	5.81	1.29
58	2023-01-27	58.02	21.77	30.51	2.98	2.25	5.82	1.06
59	2023-01-28	50.03	18.75	30.82	2.98	2.22	5.81	0.97
60	2023-01-29	60.26	22.59	30.69	2.96	2.29	5.84	1.12
61	2023-01-30	63.45	23.80	30.71	2.98	2.25	5.82	1.20
62	2023-01-31	49.01	18.40	29.00	3.12	2.14	5.92	1.09

Report Details: MSSPLS | 2023-02-16 14:15:30 | Custom Report

Real Time Data Acquisition And Monitoring

Site Name: M/s Scania Steels & Powers Limited (Formerly Known as Sidhi Vinayak Sponge Iron Pvt Ltd)

Report: Average Report

From Date: 01-12-2022T00:00:15Z To Date: 31-12-2022T00:00:41Z

Description	AAQMS_1- CO(mg/m3)	AAQMS_1- NO(ug/m3)	AAQMS_1- NO2(ug/m3)	AAQMS_1- NOx(ug/m3)	AAQMS_1- PM2.5(ug/m3)	AAQMS_1- PM10(ug/m3)	AAQMS_1- SO2(ug/m3)
Prescribed Standards	0 - 4	0 - 80	0 - 80	0 - 80	0 - 60	0 - 100	0 - 80
Maximum Data	1.38	3.13	2.27	5.98	50.34	92.29	30.24
Minimum Data	0.78	2.97	2.14	5.83	18.64	34.13	25.99
Geometric Mean	1.02	3.07	2.19	5.9	32.06	58.78	28.07
Median	1.0	3.08	2.18	5.9	32.64	59.82	28.01
Standard Deviation	0.17	0.04	0.03	0.04	7.61	13.95	1.08
Maximum Value At Time	2022-12-26 00:00:00	2022-12-08 00:00:00	2022-12-15 00:00:00	2022-12-09 00:00:00	2022-12-11 00:00:00	2022-12-11 00:00:00	2022-12-15 00:00:00
Minimum Value At Time	2022-12-15 00:00:00	2022-12-15 00:00:00	2022-12-03 00:00:00	2022-12-26 00:00:00	2022-12-15 00:00:00	2022-12-15 00:00:00	2022-12-09 00:00:00
Valid Data Points	30	30	30	30	30	30	30
Total Data Points	30	30	30	30	30	30	30
Data Availability %	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

SI No.	Time	AAQMS_1- CO(mg/m3)	AAQMS_1- NO(ug/m3)	AAQMS_1- NO2(ug/m3)	AAQMS_1- NOx(ug/m3)	AAQMS_1- PM2.5(ug/m3)	AAQMS_1- PM10(ug/m3)	AAQMS_1- SO2(ug/m3)
1	2022-12-01 00:00:00	1.05	3.08	2.19	5.91	35.41	64.91	27.81
2	2022-12-02 00:00:00	1.09	3.10	2.17	5.91	41.23	75.59	28.33
3	2022-12-03 00:00:00	1.05	3.08	2.14	5.86	42.22	77.41	27.83
4	2022-12-04 00:00:00	1.02	3.09	2.18	5.92	40.03	73.38	28.03
5	2022-12-05 00:00:00	0.93	3.07	2.21	5.91	30.52	55.96	27.99
6	2022-12-06 00:00:00	0.93	3.09	2.18	5.91	30.90	56.66	27.60
7	2022-12-07 00:00:00	0.89	3.10	2.18	5.93	28.94	53.06	27.52
8	2022-12-08 00:00:00	0.99	3.13	2.14	5.93	35.55	65.17	26.71

SI No.	Time	AAQMS_1- CO(mg/m3)	AAQMS_1- NO(ug/m3)	AAQMS_1- NO2(ug/m3)	AAQMS_1- NOx(ug/m3)	AAQMS_1- PM2.5(ug/m3)	AAQMS_1- PM10(ug/m3)	AAQMS_1- SO2(ug/m3)
9	2022-12-09 00:00:00	1.05	3.13	2.19	5.98	37.90	69.48	25.99
10	2022-12-10 00:00:00	1.22	3.13	2.15	5.94	35.79	65.62	27.08
11	2022-12-11 00:00:00	1.27	3.13	2.14	5.93	50.34	92.29	27.32
12	2022-12-12 00:00:00	1.16	3.07	2.18	5.89	35.99	65.98	28.31
13	2022-12-13 00:00:00	0.90	3.00	2.25	5.85	27.34	50.14	29.53
14	2022-12-14 00:00:00	0.80	3.02	2.20	5.84	19.82	36.33	29.92
15	2022-12-15 00:00:00	0.78	2.97	2.27	5.84	18.64	34.13	30.24
16	2022-12-16 00:00:00	0.82	3.02	2.21	5.85	19.26	35.33	29.78
17	2022-12-17 00:00:00	0.84	3.05	2.21	5.89	23.28	42.68	28.11
18	2022-12-18 00:00:00	0.92	3.10	2.15	5.90	27.22	49.91	27.24
19	2022-12-19 00:00:00	0.91	3.13	2.15	5.95	28.80	52.80	26.46
20	2022-12-20 00:00:00	0.90	3.08	2.17	5.89	26.18	48.01	27.01
21	2022-12-21 00:00:00	0.91	3.09	2.20	5.93	26.47	48.53	26.81
22	2022-12-22 00:00:00	1.07	3.13	2.18	5.96	31.86	58.40	27.36
23	2022-12-23 00:00:00	1.11	3.08	2.14	5.87	35.02	64.21	28.25
24	2022-12-24 00:00:00	1.33	3.06	2.22	5.91	40.01	73.35	28.32
25	2022-12-25 00:00:00	1.31	3.05	2.21	5.89	38.50	70.60	28.33
26	2022-12-26 00:00:00	1.38	3.03	2.16	5.83	35.25	64.62	28.82
27	2022-12-27 00:00:00	1.18	3.03	2.22	5.87	37.89	69.45	29.18
28	2022-12-28 00:00:00	0.88	3.01	2.23	5.85	26.33	48.27	29.95
29	2022-12-29 00:00:00	0.86	3.04	2.23	5.89	21.68	39.78	28.32
30	2022-12-30 00:00:00	1.13	3.11	2.17	5.93	33.41	61.24	27.88

Report Details: MSSPLS | 2023-02-22 17:48:57 | Average Report

Real Time Data Acquisition And Monitoring

Site Name: M/s Scania Steels & Powers Limited (Formerly Known as Sidhi Vinayak Sponge Iron Pvt Ltd)

Report: Average Report

From Date: 01-01-2023T00:00:15Z To Date: 31-01-2023T00:00:15Z

Description	AAQMS_1- CO(mg/m3)	AAQMS_1- NO(ug/m3)	AAQMS_1- NO2(ug/m3)	AAQMS_1- NOx(ug/m3)	AAQMS_1- PM2.5(ug/m3)	AAQMS_1- PM10(ug/m3)	AAQMS_1- SO2(ug/m3)
Prescribed Standards	0 - 4	0 - 80	0 - 80	0 - 80	0 - 60	0 - 100	0 - 80
Maximum Data	1.62	3.2	2.29	6.03	56.85	108.32	31.13
Minimum Data	0.81	2.96	2.1	5.81	1.5	2.75	26.01
Geometric Mean	1.19	3.1	2.18	5.93	25.05	52.76	28.02
Median	1.2	3.1	2.17	5.94	22.58	56.57	27.4
Standard Deviation	0.22	0.07	0.05	0.07	16.03	30.86	1.53
Maximum Value At Time	2023-01-23 00:00:00	2023-01-15 00:00:00	2023-01-29 00:00:00	2023-01-19 00:00:00	2023-01-03 00:00:00	2023-01-20 00:00:00	2023-01-26 00:00:00
Minimum Value At Time	2023-01-07 00:00:00	2023-01-29 00:00:00	2023-01-15 00:00:00	2023-01-26 00:00:00	2023-01-14 00:00:00	2023-01-14 00:00:00	2023-01-08 00:00:00
Valid Data Points	30	30	30	30	30	30	30
Total Data Points	30	30	30	30	30	30	30
Data Availability %	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

SI No.	Time	AAQMS_1- CO(mg/m3)	AAQMS_1- NO(ug/m3)	AAQMS_1- NO2(ug/m3)	AAQMS_1- NOx(ug/m3)	AAQMS_1- PM2.5(ug/m3)	AAQMS_1- PM10(ug/m3)	AAQMS_1- SO2(ug/m3)
1	2023-01-01 00:00:00	0.96	3.07	2.20	5.92	29.66	54.37	28.30
2	2023-01-02 00:00:00	1.15	3.09	2.16	5.91	43.26	79.28	28.39
3	2023-01-03 00:00:00	1.39	3.10	2.18	5.93	56.85	104.22	27.33
4	2023-01-04 00:00:00	1.37	3.12	2.15	5.94	52.50	96.29	27.00
5	2023-01-05 00:00:00	1.43	3.09	2.19	5.94	51.73	94.86	27.54
6	2023-01-06 00:00:00	0.99	3.12	2.17	5.96	30.88	56.63	27.10
7	2023-01-07 00:00:00	0.81	3.16	2.16	6.00	19.69	36.10	26.26
8	2023-01-08 00:00:00	0.82	3.18	2.16	6.02	22.04	40.41	26.01

SI No.	Time	AAQMS_1- CO(mg/m3)	AAQMS_1- NO(ug/m3)	AAQMS_1- NO2(ug/m3)	AAQMS_1- NOx(ug/m3)	AAQMS_1- PM2.5(ug/m3)	AAQMS_1- PM10(ug/m3)	AAQMS_1- SO2(ug/m3)
9	2023-01-09 00:00:00	0.91	3.16	2.16	5.99	19.20	35.20	26.45
10	2023-01-10 00:00:00	0.89	3.11	2.16	5.93	17.98	32.97	26.87
11	2023-01-11 00:00:00	0.96	3.10	2.19	5.93	28.00	51.33	27.30
12	2023-01-12 00:00:00	1.41	3.10	2.20	5.94	49.50	90.76	27.38
13	2023-01-13 00:00:00	1.34	3.17	2.15	5.98	9.98	18.30	26.74
14	2023-01-14 00:00:00	1.16	3.17	2.14	5.99	1.50	2.75	26.82
15	2023-01-15 00:00:00	1.01	3.20	2.10	6.00	1.50	2.75	27.43
16	2023-01-16 00:00:00	1.02	3.17	2.11	5.97	1.50	2.75	27.03
17	2023-01-17 00:00:00	1.23	3.18	2.16	6.00	1.50	2.75	26.62
18	2023-01-18 00:00:00	1.20	3.20	2.10	6.00	1.50	2.75	26.90
19	2023-01-19 00:00:00	1.27	3.20	2.13	6.03	30.21	55.38	26.97
20	2023-01-20 00:00:00	1.40	3.17	2.12	5.97	52.05	108.32	28.38
21	2023-01-21 00:00:00	1.41	3.06	2.22	5.90	28.55	76.14	29.12
22	2023-01-22 00:00:00	1.52	3.05	2.23	5.91	25.16	67.06	27.96
23	2023-01-23 00:00:00	1.62	3.05	2.21	5.88	22.58	60.22	27.83
24	2023-01-24 00:00:00	1.28	3.04	2.19	5.85	21.19	56.51	28.97
25	2023-01-25 00:00:00	1.49	3.01	2.23	5.86	21.42	57.13	30.16
26	2023-01-26 00:00:00	1.29	3.01	2.19	5.81	24.66	65.80	31.13
27	2023-01-27 00:00:00	1.06	2.98	2.25	5.82	21.77	58.02	30.51
28	2023-01-28 00:00:00	0.97	2.98	2.22	5.81	18.75	50.03	30.82
29	2023-01-29 00:00:00	1.12	2.96	2.29	5.84	22.59	60.26	30.69
30	2023-01-30 00:00:00	1.20	2.98	2.25	5.82	23.80	63.45	30.71

Real Time Data Acquisition And Monitoring

Site Name: M/s Scania Steels & Powers Limited (Formerly Known as Sidhi Vinayak Sponge Iron Pvt Ltd)

Report: Average Report

From Date: 01-02-2023T23:59:25Z To Date: 28-02-2023T23:59:03Z

Description	AAQMS_1- CO(mg/m3)	AAQMS_1- NO(ug/m3)	AAQMS_1- NO2(ug/m3)	AAQMS_1- NOx(ug/m3)	AAQMS_1- PM2.5(ug/m3)	AAQMS_1- PM10(ug/m3)	AAQMS_1- SO2(ug/m3)
Prescribed Standards	0 - 4	0 - 80	0 - 80	0 - 80	0 - 60	0 - 100	0 - 80
Maximum Data	1.39	3.43	2.32	6.27	27.18	72.47	35.36
Minimum Data	0.73	2.98	2.03	5.86	7.93	21.13	22.24
Geometric Mean	0.97	3.08	2.24	5.95	17.23	45.95	30.62
Median	0.95	3.04	2.26	5.91	16.47	43.94	31.58
Standard Deviation	0.16	0.12	0.07	0.11	5.37	14.32	3.25
Maximum Value At Time	2023-02-18 00:00:00	2023-02-02 00:00:00	2023-02-09 00:00:00	2023-02-01 00:00:00	2023-02-19 00:00:00	2023-02-19 00:00:00	2023-02-23 00:00:00
Minimum Value At Time	2023-02-02 00:00:00	2023-02-23 00:00:00	2023-02-02 00:00:00	2023-02-07 00:00:00	2023-02-04 00:00:00	2023-02-04 00:00:00	2023-02-01 00:00:00
Valid Data Points	27	27	27	27	27	27	27
Total Data Points	27	27	27	27	27	27	27
Data Availability %	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

SI No.	Time	AAQMS_1- CO(mg/m3)	AAQMS_1- NO(ug/m3)	AAQMS_1- NO2(ug/m3)	AAQMS_1- NOx(ug/m3)	AAQMS_1- PM2.5(ug/m3)	AAQMS_1- PM10(ug/m3)	AAQMS_1- SO2(ug/m3)
1	2023-02-01 00:00:00	0.75	3.42	2.09	6.27	14.57	38.83	22.24
2	2023-02-02 00:00:00	0.73	3.43	2.03	6.24	10.64	28.35	22.34
3	2023-02-03 00:00:00	0.82	3.34	2.09	6.17	11.34	30.23	23.38
4	2023-02-04 00:00:00	0.79	3.14	2.17	5.98	7.93	21.13	27.32
5	2023-02-05 00:00:00	0.81	3.09	2.19	5.93	9.40	25.06	28.97
6	2023-02-06 00:00:00	0.95	3.06	2.22	5.90	16.28	43.43	30.71
7	2023-02-07 00:00:00	1.18	3.02	2.22	5.86	21.75	58.00	30.93
8	2023-02-08 00:00:00	0.92	3.02	2.28	5.90	15.47	41.24	32.30

SI No.	Time	AAQMS_1- CO(mg/m3)	AAQMS_1- NO(ug/m3)	AAQMS_1- NO2(ug/m3)	AAQMS_1- NOx(ug/m3)	AAQMS_1- PM2.5(ug/m3)	AAQMS_1- PM10(ug/m3)	AAQMS_1- SO2(ug/m3)
9	2023-02-09 00:00:00	0.87	3.04	2.32	5.97	12.60	33.61	30.95
10	2023-02-10 00:00:00	0.99	3.06	2.22	5.91	16.47	43.94	31.09
11	2023-02-11 00:00:00	1.02	3.01	2.27	5.89	15.19	40.50	31.75
12	2023-02-12 00:00:00	0.76	3.00	2.26	5.87	12.79	34.12	32.06
13	2023-02-13 00:00:00	0.79	3.02	2.28	5.91	11.21	29.90	31.69
14	2023-02-14 00:00:00	0.86	3.08	2.20	5.91	11.32	30.19	30.85
15	2023-02-15 00:00:00	0.85	3.04	2.25	5.91	13.97	37.19	30.05
16	2023-02-16 00:00:00	0.92	3.05	2.21	5.89	17.23	45.97	31.14
17	2023-02-17 00:00:00	1.06	3.03	2.25	5.90	21.82	58.19	31.70
18	2023-02-18 00:00:00	1.39	3.02	2.26	5.89	25.34	67.57	31.77
19	2023-02-19 00:00:00	1.22	3.03	2.28	5.92	27.18	72.47	31.98
20	2023-02-20 00:00:00	1.05	3.06	2.30	5.98	23.69	63.16	33.83
21	2023-02-21 00:00:00	1.13	3.03	2.30	5.94	21.94	58.50	31.19
22	2023-02-22 00:00:00	1.12	3.00	2.30	5.89	22.25	59.32	33.36
23	2023-02-23 00:00:00	1.18	2.98	2.30	5.87	21.74	57.97	35.36
24	2023-02-24 00:00:00	1.03	3.00	2.28	5.87	19.71	52.57	33.95
25	2023-02-25 00:00:00	0.97	3.04	2.31	5.96	19.43	51.81	31.58
26	2023-02-26 00:00:00	0.95	3.05	2.30	5.96	19.50	51.99	32.16
27	2023-02-27 00:00:00	1.01	3.03	2.30	5.94	24.49	65.31	32.06

Report Details: MSSPLS | 2023-03-29 16:29:03 | Average Report

ANNEXURE-5

Fugitive Emission Monitoring Report (October - 2022 to March - 2023)

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognised by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 - + 91 33 2443 8127/8128; Fax - + 91 33 2443 8128; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

ANX-5

Name of Industry	M/s. Scania Steels & Powers Ltd. (Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)
Address	22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011

FUGITIVE EMISSION MONITORING RESULT

TABLE: - I							
	_	tive Emission Monit	-				
	Location (Poriod: 4	Inside Product Ho October, 2022 To Ma					
DATE	PM ₁₀	PM _{2.5}	SO ₂	NO ₂			
DATE	(μg/m3)	(μg/m3)	(μg/m3)	(μg/m3)			
05.10.2022	132	58	30	38			
08.10.2022	138	65	25	33			
12.10.2022	121	51	28	31			
15.10.2022	126	57	34	37			
19.10.2022	123	49	30	35			
22.10.2022	137	63	33	30			
26.10.2022	130	57	25	39			
29.10.2022	118	51	28	36			
02.11.2022	110	44	35	41			
05.11.2022	129	54	24	38			
09.11.2022	122	57	32	43			
12.11.2022	105	41	28	33			
16.11.2022	133	57	27	30			
19.11.2022	121	52	30	36			
23.11.2022	142	50	29	31			
26.11.2022	136	52	28	35			
03.12.2022	121	53	34	30			
07.12.2022	110	50	30	34			
10.12.2022	146	55	27	30			
14.12.2022	141	51	33	33			
17.12.2022	148	59	28	35			
21.12.2022	123	52	27	54			
24.12.2022	142	50	24	45			
28.12.2022	114	46	25	50			
30.12.2022	140	52	29	43			
04.01.2023	115	43	24	49			
07.01.2023	141	56	26	45			

Cont.....

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognised by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 - + 91 33 2443 8127/8128; Fax - + 91 33 2443 8128; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

ANX-5

	O	TABLE: - I		
	Onsite Fugi Location	tive Emission Monit Inside Product Ho	-	
		October, 2022 To M		
DATE	PM ₁₀	PM _{2.5}	SO ₂	NO ₂
	(μg/m3)	(μg/m3)	(μg/m3)	(μg/m3)
11.01.2023	137	48	24	50
14.01.2023	140	62	29	52
18.01.2023	112	45	27	44
21.01.2023	105	36	25	48
25.01.2023	111	41	31	34
28.01.2023	108	38	27	50
02.02.2023	103	34	25	40
05.02.2023	128	58	28	32
09.02.2023	132	63	34	38
12.02.2023	101	47	28	31
16.02.2023	128	55	35	33
19.02.2023	133	61	31	44
23.02.2023	103	48	33	37
26.02.2023	115	52	29	49
02.03.2023	126	54	35	32
05.03.2023	121	48	31	41
09.03.2023	106	50	25	35
12.03.2023	127	55	33	45
16.03.2023	148	71	28	30
19.03.2023	142	64	24	31
23.03.2023	129	58	31	37
26.03.2023	140	66	26	32
30.03.2023	104	50	33	44

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognised by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 - + 91 33 2443 8127/8128; Fax - + 91 33 2443 8128; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

ANX-5

Name of Industry	M/s. Scania Steels & Powers Ltd.			
	(Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)			
Address	22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011			

FUGITIVE EMISSION MONITORING RESULT

	0 4 5 4	TABLE: - 2			
	Onsite Fugit Location	ive Emission Monit Near ESP	oring Results		
(Period: October, 2022 To March, 2023)					
DATE	PM ₁₀	PM _{2.5}	SO ₂	NO ₂	
	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	
05.10.2022	110	40	17	27	
08.10.2022	138	61	19	38	
12.10.2022	113	38	21	33	
15.10.2022	128	52	16	39	
19.10.2022	109	38	19	29	
22.10.2022	115	49	15	36	
26.10.2022	126	50	17	27	
29.10.2022	152	53	13	32	
02.11.2022	109	40	17	37	
05.11.2022	115	46	14	25	
09.11.2022	124	48	16	32	
12.11.2022	114	39	12	28	
16.11.2022	137	62	14	30	
19.11.2022	119	45	17	34	
23.11.2022	135	46	13	24	
26.11.2022	114	46	16	36	
03.12.2022	140	46	14	27	
07.12.2022	123	53	19	30	
10.12.2022	135	65	22	43	
14.12.2022	146	69	17	32	
17.12.2022	129	58	23	46	
21.12.2022	157	75	20	40	
24.12.2022	140	62	18	37	
28.12.2022	135	62	22	32	
30.12.2022	147	63	19	42	
04.01.2023	125	60	25	38	

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognised by MoEF&CC, Govt. of India
- Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 - + 91 33 2443 8127/8128; Fax - + 91 33 2443 8128; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

ANX-5

TABLE: - 2 **Onsite Fugitive Emission Monitoring Results** Near ESP

(Period: October, 2022 To March, 2023)					
DATE	PM ₁₀	PM _{2.5}	SO ₂	NO ₂	
	(μg/m ³)	(μg/m ³)	$(\mu g/m^3)$	$(\mu g/m^3)$	
.07.01.2023	156	70	23	44	
11.01.2023	144	60	19	34	
14.01.2023	120	55	17	41	
18.01.2023	145	70	19	32	
21.01.2023	157	74	24	37	
25.01.2023	129	57	17	33	
28.01.2023	135	62	13	32	
02.02.2023	140	60	15	35	
05.02.2023	131	62	17	41	
09.02.2023	109	46	14	33	
12.02.2023	120	53	13	28	
16.02.2023	113	49	16	35	
19.02.2023	132	55	13	31	
23.02.2023	118	47	14	32	
26.02.2023	129	50	16	36	
02.03.2023	120	49	15	28	
05.03.2023	110	40	18	39	
09.03.2023	113	47	14	30	
12.03.2023	121	53	19	33	
16.03.2023	132	59	12	38	
19.03.2023	120	46	16	25	
23.03.2023	109	44	13	40	
26.03.2023	124	52	19	35	
30.03.2023	119	45	14	32	

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognised by MoEF&CC, Govt. of India
- Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 - + 91 33 2443 8127/8128; Fax - + 91 33 2443 8128; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

ANX-5

	All
Name of Industry	M/s. Scania Steels & Powers Ltd.
Name of Industry	(Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)
Address	22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011

FUGITIVE EMISSION MONITORING RESULT

TABLE: - 3					
	Onsite Fugit	tive Emission Monit Near DRI Control	_		
(Period: October, 2022 To March, 2023)					
DATE	PM ₁₀	PM _{2.5}	SO ₂	NO ₂	
	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	(μg/m ³)	
05.10.2022	118	50	20	30	
08.10.2022	134	59	17	28	
12.10.2022	123	57	15	36	
15.10.2022	142	60	25	31	
19.10.2022	126	49	18	39	
22.10.2022	129	58	20	29	
26.10.2022	119	58	15	32	
29.10.2022	156	75	19	37	
02.11.2022	143	64	26	43	
05.11.2022	154	72	30	36	
09.11.2022	147	71	20	28	
12.11.2022	151	74	17	39	
16.11.2022	131	62	21	29	
19.11.2022	129	62	25	43	
23.11.2022	143	70	19	30	
26.11.2022	159	75	28	37	
03.12.2022	133	61	18	34	
07.12.2022	120	59	28	41	
10.12.2022	141	69	30	36	
14.12.2022	139	67	29	41	
17.12.2022	157	71	27	47	
21.12.2022	122	52	30	36	
24.12.2022	168	81	29	41	
28.12.2022	152	71	33	44	
30.12.2022	140	63	28	37	
04.01.2023	154	71	32	42	
07.01.2023	132	57	35	36	

Cont.....

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognised by MoEF&CC, Govt. of India
- Laboratory Recognized by WBPCB

30.03.2023

Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 − + 91 33 2443 8127/8128; Fax − + 91 33 2443 8128; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

ANX-5

TABLE: - 3 Onsite Fugitive Emission Monitoring Results Near DRI Control Room (Period: October, 2022 To March, 2023) **DATE** PM_{10} PM_{2.5} NO_2 SO_2 $(\mu g/m^3)$ $(\mu g/m^3)$ $(\mu g/m^3)$ $(\mu g/m^3)$ 11.01.2023 14.01.2023 18.01.2023 21.01.2023 25.01.2023 28.01.2023 02.02.2023 05.02.2023 09.02.2023 12.02.2023 16.02.2023 19.02.2023 23.02.2023 26.02.2023 02.03.2023 05.03.2023 09.03.2023 12.03.2023 16.03.2023 19.03.2023 23.03.2023 26.03.2023

For ENVIROTECH EAST (P) LTD.

(Authorized Signatory)

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognised by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

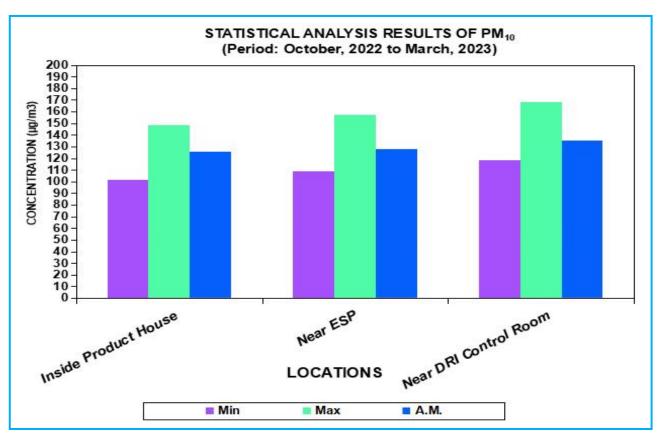
2 - + 91 33 2443 8127/8128; Fax - + 91 33 2443 8128; email: eeplkol@gmail.com; eeplkol@gmail.com
CIN NO: U74210WB1989PTC047403

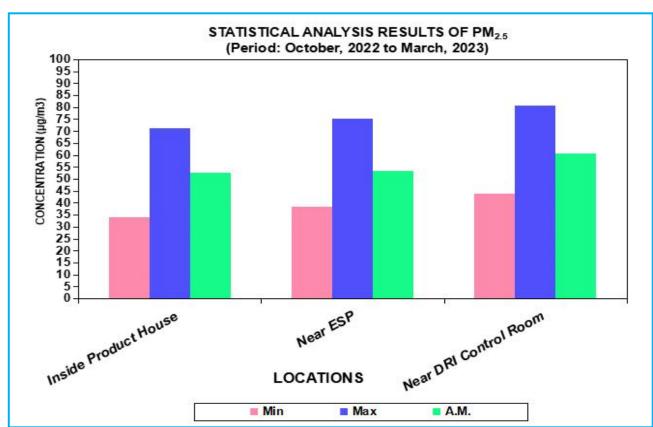
ANX-5

Table 1		Statistical Analysis of Pollutants				
		(Period: October, 2022 To March, 2023)				
Pollutants	Locations	MES	Min	Max	A.M.	P - 98
	Inside Product House	50	101	148	125.3	148.00
PM_{10}	Near ESP	50	109	157	127.6	157.00
$(\mu g/m^3)$	Near DRI Control Room	50	118	168	135.3	165.06
	Overall	150	101	168	129.4	164.74
	Inside Product House	50	34	71	52.5	65.90
$PM_{2.5} (\mu g/m^3)$	Near ESP	50	38	75	53.4	73.82
	Near DRI Control Room	50	44	81	60.6	77.55
	Overall	150	34	81	55.5	77.40
	Inside Product House	50	24	35	28.9	35.00
SO ₂ (μg/m ³)	Near ESP	50	12	25	16.9	24.02
	Near DRI Control Room	50	15	35	21.7	33.04
	Overall	150	12	35	22.5	34.92
NO ₂ (μg/m ³)	Inside Product House	50	30	54	38.5	52.04
	Near ESP	50	24	46	34.0	44.04
	Near DRI Control Room	50	28	47	35.4	45.04
	Overall	150	24	54	35.9	51.76

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company


- Laboratory Recognised by MoEF&CC, Govt. of India
- Laboratory Recognized by WBPCB
- Accredited EIA Consultant by QCI-NABET



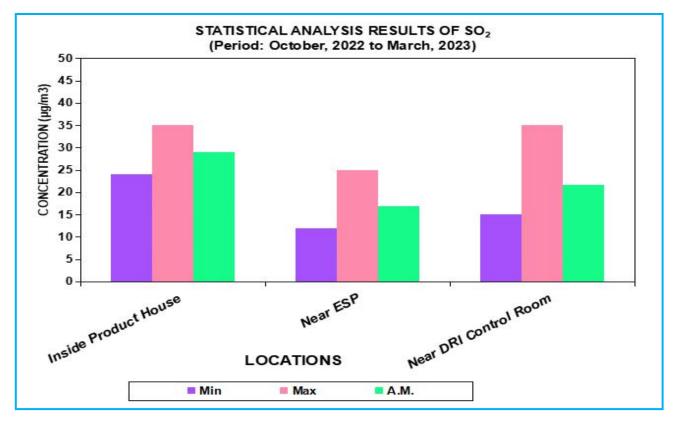
100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

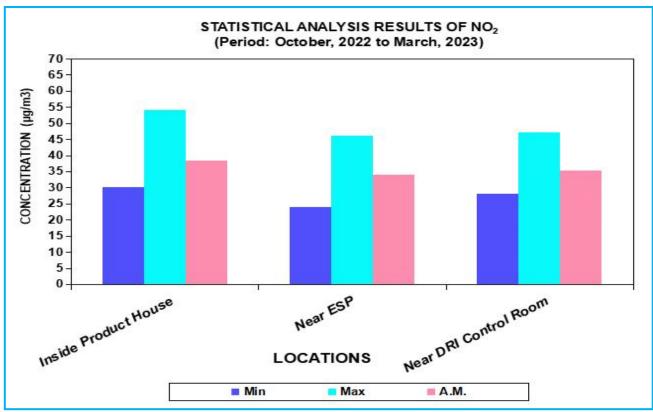
2 − + 91 33 2443 8127/8128; Fax − + 91 33 2443 8128; email: eeplkol@gmail.com; eeplkol@gmail.com
CIN NO: U74210WB1989PTC047403

ANX-5

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognised by MoEF&CC, Govt. of India
- Laboratory Recognized by WBPCB
- Accredited EIA Consultant by QCI-NABET





100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 − + 91 33 2443 8127/8128; Fax − + 91 33 2443 8128; email: eeplkol@gmail.com; eeplkol@gmail.com
CIN NO: U74210WB1989PTC047403

ANX-5

For ENVIROTECH EAST (P) LTD.

ANNEXURE-6

Cooling Discharge Water Analysis Report (October - 2022 to March - 2023)

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India
- Laboratory Recognized by WBPCB
- Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 − +91 33 2443 8127/8128; +91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

ANX-6

No. 2022-23/EEPL/MON/SC/213

28.10.2022

COOLING DISCHARGE WATER ANALYSIS REPORT

Name of the client	M/s. Scania Steels & Powers Ltd. (Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)
Address	22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011
Location of Sample	Cooling Discharge Water
Sampling Date	16.10.2022
Sample Collected by	Company Representative (EEPL)

RESULTS OF SAMPLE

Sl. No.	Parameter	Unit	Concentration	Standard
1.	рН	-	6.6	5.5 - 9.0
2.	Total Suspended Solids	mg/l	51	100
3.	Oil & Grease	mg/l	<2	10
4.	COD	mg/l	56	250
5.	BOD (3 days at 27°C)	mg/l	<4	30

Contents of this report are meant for your guidance and should not be used for Advertisement, Evidence, Litigation

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India
- Laboratory Recognized by WBPCB
- Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 − +91 33 2443 8127/8128; +91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

ANX-6

No. 2022-23/EEPL/MON/SC/226

29.11.2022

COOLING DISCHARGE WATER ANALYSIS REPORT

Name of the client	M/s. Scania Steels & Powers Ltd. (Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)
Address	22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011
Location of Sample	Cooling Discharge Water
Sampling Date	17.11.2022
Sample Collected by	Company Representative (EEPL)

RESULTS OF SAMPLE

Sl. No.	Parameter	Unit	Concentration	Standard
1.	рН	-	6.0	5.5 - 9.0
2.	Total Suspended Solids	mg/l	46	100
3.	Oil & Grease	mg/l	<2	10
4.	COD	mg/l	39	250
5.	BOD (3 days at 27°C)	mg/l	<4	30

Contents of this report are meant for your guidance and should not be used for Advertisement, Evidence, Litigation

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata − 700 107, West Bengal, India

2 − +91 33 2443 8127/8128; +91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

ANX-6

No. 2022-23/EEPL/MON/SC/234 27.12.2022

COOLING DISCHARGE WATER ANALYSIS REPORT

Name of the client	M/s. Scania Steels & Powers Ltd. (Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)
Address	22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011
Location of Sample	Cooling Discharge Water
Sampling Date	14.12.2022
Sample Collected by	Company Representative (EEPL)

RESULTS OF SAMPLE

Sl. No.	Parameter	Unit	Concentration	Standard
1.	pH	_	6.1	5.5 - 9.0
2.	Total Suspended Solids	mg/l	55	100
3.	Oil & Grease	mg/l	<2	10
4.	COD	mg/l	64	250
5.	BOD (3 days at 27°C)	mg/l	8	30

Contents of this report are meant for your guidance and should not be used for Advertisement, Evidence, Litigation

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India
- Laboratory Recognized by WBPCB
- Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 − +91 33 2443 8127/8128; +91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

ANX-6

No. 2022-23/EEPL/MON/SC/243

24.01.2023

COOLING DISCHARGE WATER ANALYSIS REPORT

Name of the client	M/s. Scania Steels & Powers Ltd. (Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)
Address	22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011
Location of Sample	Cooling Discharge Water
Sampling Date	10.01.2023
Sample Collected by	Company Representative (EEPL)

RESULTS OF SAMPLE

Sl. No.	Parameter	Unit	Concentration	Standard
1.	рН	-	6.2	5.5 - 9.0
2.	Total Suspended Solids	mg/l	44	100
3.	Oil & Grease	mg/l	<2	10
4.	COD	mg/l	37	250
5.	BOD (3 days at 27°C)	mg/l	<4	30

Contents of this report are meant for your guidance and should not be used for Advertisement, Evidence, Litigation

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India
- Laboratory Recognized by WBPCB
- Accredited EIA Consultant by QCI-NABET

ANX-6

No. 2022-23/EEPL/MON/SC/251

28.02.2023

COOLING DISCHARGE WATER ANALYSIS REPORT

Name of the client	M/s. Scania Steels & Powers Ltd. (Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)
Address	22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011
Location of Sample	Cooling Discharge Water
Sampling Date	14.02.2023
Sample Collected by	Company Representative (EEPL)

RESULTS OF SAMPLE

Sl. No.	Parameter	Unit	Concentration	Standard
1.	рН	-	6.6	5.5 - 9.0
2.	Total Suspended Solids	mg/l	48	100
3.	Oil & Grease	mg/l	<2	10
4.	COD	mg/l	53	250
5.	BOD (3 days at 27°C)	mg/l	4	30

Contents of this report are meant for your guidance and should not be used for Advertisement, Evidence, Litigation

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India
- Laboratory Recognized by WBPCB
- Accredited EIA Consultant by QCI-NABET

ANX-6

No. 2022-23/EEPL/MON/SC/258

23.03.2023

COOLING DISCHARGE WATER ANALYSIS REPORT

Name of the client	M/s. Scania Steels & Powers Ltd. (Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)
Address	22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011
Location of Sample	Cooling Discharge Water
Sampling Date	11.03.2023
Sample Collected by	Company Representative (EEPL)

RESULTS OF SAMPLE

Sl. No.	Parameter	Unit	Concentration	Standard
1.	рН	-	6.8	5.5 - 9.0
2.	Total Suspended Solids	mg/l	58	100
3.	Oil & Grease	mg/l	<2	10
4.	COD	mg/l	60	250
5.	BOD (3 days at 27°C)	mg/l	6	30

Contents of this report are meant for your guidance and should not be used for Advertisement, Evidence, Litigation

For ENVIROTECH EAST (P) LTD.

ANNEXURE-7

Ground Water Analysis Report (October - 2022 to March - 2023)

28.10.2022

Envirotech East Pvt. Limited

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India
- Laboratory Recognized by WBPCB
- Accredited EIA Consultant by QCI-NABET

No. 2022-23/EEPL/MON/SC/214 MONITORING REPORT

Name of Industry M/s. Scania Steels & Powers Ltd. (Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.) 22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011 Address: 16.10.2022 Date of Sampling (A)Borewell-2 water (at Project Site) (B) Borewell water (at Punjipatra) Location

GROUND WATER ANALYSIS REPORT

Sl. No.	Parameter	Unit	Concentration		Standard
			(a)	(b)	IS:10500:2012
1	Colour	Hazen	<5	<5	5
2	Odour		Agreeable	Agreeable	Agreeable
3	Taste		Agreeable	Agreeable	Agreeable
4	Turbidity	NTU	<1	<1	1
5	рН	mg/L	6.9	6.7	6.5-8.5
6	Total Dissolved Solids	mg/L	85	79	500
7	Total Hardness (as CaCO3)	mg/L	55	50	200
8	Calcium (as Ca)	mg/L	17	15	75
9	Magnessium (as Mg)	mg/L	3	3	30
10	Anionic detergents (as MBAS)	mg/L	< 0.1	< 0.1	0.2
11	Chloride (as Cl)	mg/L	16	14	250
12	Residual Free Chlorine	mg/L	< 0.1	< 0.1	0.2
13	Fluoride (as F)	mg/L	0.06	0.07	1
14	Copper (as Cu)	mg/L	< 0.05	< 0.05	0.05
15	Manganese (as Mn)	mg/L	< 0.05	< 0.05	0.1
16	Sulphate (as SO4)	mg/L	<2	<2	200
17	Nitrate (as NO3)	mg/L	1.8	1.3	45
18	Phenol Compounds (as C6H5OH)	mg/L	< 0.001	< 0.001	0.001
19	Mercury (as Hg)	mg/L	< 0.001	< 0.001	0.001
20	Cadmium (as Cd)	mg/L	< 0.003	< 0.003	0.003
21	Selenium (as Se)	mg/L	< 0.002	< 0.002	0.01
22	Arsenic (as As)	mg/L	< 0.002	< 0.002	0.01
23	Cyanide (as CN)	mg/L	< 0.05	< 0.05	0.05
24	Lead (as Pb)	mg/L	< 0.01	< 0.01	0.01
25	Total Chromium (Cr)	mg/L	< 0.05	< 0.05	0.05
26	Zinc (as Zn)	mg/L	< 0.05	< 0.05	5
27	Aluminium (as Al)	mg/L	< 0.03	< 0.03	0.03
28	Alkalinity (as CaCO3)	mg/L	46	41	200
29	Iron (as Fe)	mg/L	0.11	0.13	1.0
30	,				Shall not be
	Total Coliform	MPN/100 ml	N.D.	N.D.	detectable in any
					100 ml sample
31					Shall not be
	Fecal Coliform	MPN/100 ml	N.D.	N.D.	detectable in any
					100 ml sample
32					Shall not be
	E.Coli	MPN/100 ml	N.D.	N.D.	detectable in any
					100 ml sample

BDL: Below Detectable Limit For ENVIROTECH EAST (P) LTD.

29.11.2022

Envirotech East Pvt. Limited

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB
- Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 − +91 33 2443 8127/8128; +91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

No. 2022-23/EEPL/MON/SC/227

ANX-7

MONITORING REPORT

Name of Industry M/s. Scania Steels & Powers Ltd. (Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.) 22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011 Address: 17.11.2022 Date of Sampling (A)Borewell-2 water (at Project Site) (B) Borewell water (at Punjipatra) Location

GROUND WATER ANALYSIS REPORT

Sl. No.	Parameter	Unit	Concentration		Standard IS:10500:2012
			(a)	(b)	
1	Colour	Hazen	<5	<5	5
2	Odour		Agreeable	Agreeable	Agreeable
3	Taste		Agreeable	Agreeable	Agreeable
4	Turbidity	NTU	<1	<1	1
5	рН	mg/L	7.1	7.3	6.5-8.5
6	Total Dissolved Solids	mg/L	99	84	500
7	Total Hardness (as CaCO3)	mg/L	88	58	200
8	Calcium (as Ca)	mg/L	27	17	75
9	Magnessium (as Mg)	mg/L	5	4	30
10	Anionic detergents (as MBAS)	mg/L	< 0.1	< 0.1	0.2
11	Chloride (as Cl)	mg/L	8	11	250
12	Residual Free Chlorine	mg/L	< 0.1	< 0.1	0.2
13	Fluoride (as F)	mg/L	0.08	0.09	1
14	Copper (as Cu)	mg/L	< 0.05	< 0.05	0.05
15	Manganese (as Mn)	mg/L	< 0.05	< 0.05	0.1
16	Sulphate (as SO4)	mg/L	<2	<2	200
17	Nitrate (as NO3)	mg/L	1.7	1.5	45
18	Phenol Compounds (as C6H5OH)	mg/L	< 0.001	< 0.001	0.001
19	Mercury (as Hg)	mg/L	< 0.001	< 0.001	0.001
20	Cadmium (as Cd)	mg/L	< 0.003	< 0.003	0.003
21	Selenium (as Se)	mg/L	< 0.002	< 0.002	0.01
22	Arsenic (as As)	mg/L	< 0.002	< 0.002	0.01
23	Cyanide (as CN)	mg/L	< 0.05	< 0.05	0.05
24	Lead (as Pb)	mg/L	< 0.01	< 0.01	0.01
25	Total Chromium (Cr)	mg/L	< 0.05	< 0.05	0.05
26	Zinc (as Zn)	mg/L	< 0.05	< 0.05	5
27	Aluminium (as Al)	mg/L	< 0.03	< 0.03	0.03
28	Alkalinity (as CaCO3)	mg/L	54	48	200
29	Iron (as Fe)	mg/L	0.18	0.15	1.0
30	Total Coliform	MPN/100 ml	N.D.	N.D.	Shall not be detectable in any 100 ml sample
31	Fecal Coliform	MPN/100 ml	N.D.	N.D.	Shall not be detectable in any 100 ml sample
32	E.Coli	MPN/100 ml	N.D.	N.D.	Shall not be detectable in any 100 ml sample

For ENVIROTECH EAST (P) LTD. BDL: Below Detectable Limit

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata − 700 107, West Bengal, India

2 − +91 33 2443 8127/8128; +91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

No. 2022-23/EEPL/MON/SC/235

ANX-7

27.12.2022

Name of Industry	M/s. Scania Steels & Powers Ltd.		
	(Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)		
Address:	22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011		
Date of Sampling	14.12.2022		
Location	(A) Borewell-2 water (at Project Site) (B) Borewell water (at Punjipatra)		

GROUND WATER ANALYSIS REPORT

Sl. No.	Parameter	Unit	Concentration		Standard
			(a)	(b)	IS:10500:2012
1	Colour	Hazen	<5	<5	5
2	Odour		Agreeable	Agreeable	Agreeable
3	Taste		Agreeable	Agreeable	Agreeable
4	Turbidity	NTU	<1	<1	1
5	рН	mg/L	6.9	6.8	6.5-8.5
6	Total Dissolved Solids	mg/L	105	93	500
7	Total Hardness (as CaCO3)	mg/L	82	74	200
8	Calcium (as Ca)	mg/L	23	21	75
9	Magnessium (as Mg)	mg/L	6	4	30
10	Anionic detergents (as MBAS)	mg/L	< 0.1	< 0.1	0.2
11	Chloride (as Cl)	mg/L	15	13	250
12	Residual Free Chlorine	mg/L	< 0.1	< 0.1	0.2
13	Fluoride (as F)	mg/L	0.11	0.08	1
14	Copper (as Cu)	mg/L	< 0.05	< 0.05	0.05
15	Manganese (as Mn)	mg/L	< 0.05	< 0.05	0.1
16	Sulphate (as SO4)	mg/L	<2	<2	200
17	Nitrate (as NO3)	mg/L	1.3	1.1	45
18	Phenol Compounds (as C6H5OH)	mg/L	< 0.001	< 0.001	0.001
19	Mercury (as Hg)	mg/L	< 0.001	< 0.001	0.001
20	Cadmium (as Cd)	mg/L	< 0.003	< 0.003	0.003
21	Selenium (as Se)	mg/L	< 0.002	< 0.002	0.01
22	Arsenic (as As)	mg/L	< 0.002	< 0.002	0.01
23	Cyanide (as CN)	mg/L	< 0.05	< 0.05	0.05
24	Lead (as Pb)	mg/L	< 0.01	< 0.01	0.01
25	Total Chromium (Cr)	mg/L	< 0.05	< 0.05	0.05
26	Zinc (as Zn)	mg/L	< 0.05	< 0.05	5
27	Aluminium (as Al)	mg/L	< 0.03	< 0.03	0.03
28	Alkalinity (as CaCO3)	mg/L	57	52	200
29	Iron (as Fe)	mg/L	0.14	0.16	1.0
30	Total Coliform	MPN/100 ml	N.D.	N.D.	Shall not be detectable in any 100 ml sample
31	Fecal Coliform	MPN/100 ml	N.D.	N.D.	Shall not be detectable in any 100 ml sample
32	E.Coli	MPN/100 ml	N.D.	N.D.	Shall not be detectable in any 100 ml sample

BDL: Below Detectable Limit

For ENVIROTECH EAST (P) LTD.

24.01.2023

Envirotech East Pvt. Limited

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata − 700 107, West Bengal, India

2 − +91 33 2443 8127/8128; +91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

No. 2022-23/EEPL/MON/SC/244

MONITORING REPORT

Name of Industry	Name of Industry M/s. Scania Steels & Powers Ltd.			
(Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)				
Address:	22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011			
Date of Sampling	10.01.2023			
Location	(A)Borewell-2 water (at Project Site) (B) Borewell water (at Punjipatra)			

GROUND WATER ANALYSIS REPORT

Sl. No.	Parameter	Unit	Concer	ntration	Standard
			(a)	(b)	IS:10500:2012
1	Colour	Hazen	<5	<5	5
2	Odour		Agreeable	Agreeable	Agreeable
3	Taste		Agreeable	Agreeable	Agreeable
4	Turbidity	NTU	<1	<1	1
5	pН	mg/L	7.1	6.9	6.5-8.5
6	Total Dissolved Solids	mg/L	103	94	500
7	Total Hardness (as CaCO3)	mg/L	76	67	200
8	Calcium (as Ca)	mg/L	22	20	75
9	Magnessium (as Mg)	mg/L	5	4	30
10	Anionic detergents (as MBAS)	mg/L	< 0.1	< 0.1	0.2
11	Chloride (as Cl)	mg/L	10	12	250
12	Residual Free Chlorine	mg/L	< 0.1	< 0.1	0.2
13	Fluoride (as F)	mg/L	< 0.05	< 0.05	1
14	Copper (as Cu)	mg/L	< 0.05	< 0.05	0.05
15	Manganese (as Mn)	mg/L	< 0.05	< 0.05	0.1
16	Sulphate (as SO4)	mg/L	<2	<2	200
17	Nitrate (as NO3)	mg/L	1.4	1.3	45
18	Phenol Compounds (as C6H5OH)	mg/L	< 0.001	< 0.001	0.001
19	Mercury (as Hg)	mg/L	< 0.001	< 0.001	0.001
20	Cadmium (as Cd)	mg/L	< 0.003	< 0.003	0.003
21	Selenium (as Se)	mg/L	< 0.002	< 0.002	0.01
22	Arsenic (as As)	mg/L	< 0.002	< 0.002	0.01
23	Cyanide (as CN)	mg/L	< 0.05	< 0.05	0.05
24	Lead (as Pb)	mg/L	< 0.01	< 0.01	0.01
25	Total Chromium (Cr)	mg/L	< 0.05	< 0.05	0.05
26	Zinc (as Zn)	mg/L	< 0.05	< 0.05	5
27	Aluminium (as Al)	mg/L	< 0.03	< 0.03	0.03
28	Alkalinity (as CaCO3)	mg/L	57	52	200
29	Iron (as Fe)	mg/L	< 0.05	< 0.05	1.0
30	Total Coliform	MPN/100 ml	N.D.	N.D.	Shall not be detectable in any 100 ml sample
31	Fecal Coliform	MPN/100 ml	N.D.	N.D.	Shall not be detectable in any 100 ml sample
32	E.Coli	MPN/100 ml	N.D.	N.D.	Shall not be detectable in any 100 ml sample

BDL: Below Detectable Limit

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata − 700 107, West Bengal, India

2 − +91 33 2443 8127/8128; +91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

ANX-7

28.02.2023

No. 2022-23/EEPL/MON/SC/252

MONITORING REPORT

Name of Industry	M/s. Scania Steels & Powers Ltd.		
	(Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)		
Address:	22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011		
Date of Sampling	14.02.2023		
Location	(A)Borewell-2 water (at Project Site) (B) Borewell water (at Punjipatra)		

GROUND WATER ANALYSIS REPORT

Sl. No.	Parameter	Unit	Concentration		Standard
			(a)	(b)	IS:10500:2012
1	Colour	Hazen	<5	<5	5
2	Odour		Agreeable	Agreeable	Agreeable
3	Taste		Agreeable	Agreeable	Agreeable
4	Turbidity	NTU	<1	<1	1
5	pH	mg/L	6.7	6.8	6.5-8.5
6	Total Dissolved Solids	mg/L	95	91	500
7	Total Hardness (as CaCO3)	mg/L	68	63	200
8	Calcium (as Ca)	mg/L	19	18	75
9	Magnessium (as Mg)	mg/L	5	5	30
10	Anionic detergents (as MBAS)	mg/L	< 0.1	< 0.1	0.2
11	Chloride (as Cl)	mg/L	12	10	250
12	Residual Free Chlorine	mg/L	< 0.1	< 0.1	0.2
13	Fluoride (as F)	mg/L	< 0.05	< 0.05	1
14	Copper (as Cu)	mg/L	< 0.05	< 0.05	0.05
15	Manganese (as Mn)	mg/L	< 0.05	< 0.05	0.1
16	Sulphate (as SO4)	mg/L	<2	<2	200
17	Nitrate (as NO3)	mg/L	1.2	1.1	45
18	Phenol Compounds (as C6H5OH)	mg/L	< 0.001	< 0.001	0.001
19	Mercury (as Hg)	mg/L	< 0.001	< 0.001	0.001
20	Cadmium (as Cd)	mg/L	< 0.003	< 0.003	0.003
21	Selenium (as Se)	mg/L	< 0.002	< 0.002	0.01
22	Arsenic (as As)	mg/L	< 0.002	< 0.002	0.01
23	Cyanide (as CN)	mg/L	< 0.05	< 0.05	0.05
24	Lead (as Pb)	mg/L	< 0.01	< 0.01	0.01
25	Total Chromium (Cr)	mg/L	< 0.05	< 0.05	0.05
26	Zinc (as Zn)	mg/L	< 0.05	< 0.05	5
27	Aluminium (as Al)	mg/L	< 0.03	< 0.03	0.03
28	Alkalinity (as CaCO3)	mg/L	46	43	200
29	Iron (as Fe)	mg/L	0.15	0.12	1.0
30	Total Coliform	MPN/100 ml	N.D.	N.D.	Shall not be detectable in any 100 ml sample
31	Fecal Coliform	MPN/100 ml	N.D.	N.D.	Shall not be detectable in any 100 ml sample
32	E.Coli	MPN/100 ml	N.D.	N.D.	Shall not be detectable in any 100 ml sample

BDL: Below Detectable Limit

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

ANX-7

No. 2022-23/EEPL/MON/SC/259

23.03.2023

MONITORING REPORT

Name of Industry	M/s. Scania Steels & Powers Ltd.		
	(Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)		
Address:	22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011		
Date of Sampling	11.03.2023		
Location	(A)Borewell-2 water (at Project Site) (B) Borewell water (at Punjipatra)		

GROUND WATER ANALYSIS REPORT

Sl. No.	Parameter	Unit	Concentration		Standard
			(a)	(b)	IS:10500:2012
1	Colour	Hazen	<5	<5	5
2	Odour		Agreeable	Agreeable	Agreeable
3	Taste		Agreeable	Agreeable	Agreeable
4	Turbidity	NTU	<1	<1	1
5	pН	mg/L	7.3	7.4	6.5-8.5
6	Total Dissolved Solids	mg/L	108	96	500
7	Total Hardness (as CaCO3)	mg/L	81	77	200
8	Calcium (as Ca)	mg/L	24	21	75
9	Magnessium (as Mg)	mg/L	5	6	30
10	Anionic detergents (as MBAS)	mg/L	< 0.1	< 0.1	0.2
11	Chloride (as Cl)	mg/L	17	13	250
12	Residual Free Chlorine	mg/L	< 0.1	< 0.1	0.2
13	Fluoride (as F)	mg/L	< 0.05	< 0.05	1
14	Copper (as Cu)	mg/L	< 0.05	< 0.05	0.05
15	Manganese (as Mn)	mg/L	< 0.05	< 0.05	0.1
16	Sulphate (as SO4)	mg/L	<2	<2	200
17	Nitrate (as NO3)	mg/L	1.8	1.6	45
18	Phenol Compounds (as C6H5OH)	mg/L	< 0.001	< 0.001	0.001
19	Mercury (as Hg)	mg/L	< 0.001	< 0.001	0.001
20	Cadmium (as Cd)	mg/L	< 0.003	< 0.003	0.003
21	Selenium (as Se)	mg/L	< 0.002	< 0.002	0.01
22	Arsenic (as As)	mg/L	< 0.002	< 0.002	0.01
23	Cyanide (as CN)	mg/L	< 0.05	< 0.05	0.05
24	Lead (as Pb)	mg/L	< 0.01	< 0.01	0.01
25	Total Chromium (Cr)	mg/L	< 0.05	< 0.05	0.05
26	Zinc (as Zn)	mg/L	< 0.05	< 0.05	5
27	Aluminium (as Al)	mg/L	< 0.03	< 0.03	0.03
28	Alkalinity (as CaCO3)	mg/L	59	53	200
29	Iron (as Fe)	mg/L	0.21	0.16	1.0
30	Total Coliform	MPN/100 ml	N.D.	N.D.	Shall not be detectable in any 100 ml sample
31	Fecal Coliform	MPN/100 ml	N.D.	N.D.	Shall not be detectable in any 100 ml sample
32	E.Coli	MPN/100 ml	N.D.	N.D.	Shall not be detectable in any 100 ml sample

BDL: Below Detectable Limit

For ENVIROTECH EAST (P) LTD.

ANNEXURE-8

Noise Level Monitoring Report (October - 2022 to March - 2023)

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB
- Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 − +91 33 2443 8127/8128; +91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

No. 2022-23/EEPL/MON/SC/212

28.10.2022

ANX-8

NOISE LEVEL MONITORING REPORT

Name of Industry	M/s. Scania Steels & Powers Ltd. (Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)
Address:	22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011
Date of Monitoring	16.10.2022

MONITORING REPORT

Sl. No.	Location	Noise Level in L _{eq} dB (A)
1.	In between DRI plant 1&2 and 3&4	63.3 - 72.0
2.	Near ADM Building	54.1 - 64.2
3.	Near Main Gate	56.6 - 69.1
4.	Near DRI Control Room	64.5 - 73.2
5.	Samaruma Village	57.6 - 67.3
6.	Panjipatra Village	59.5 - 72.5
7.	Parkipahari Village	56.2 - 65.9
8.	Near Raw Material Area	62.0 - 75.3
	STANDARD	75 dB (A)

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata − 700 107, West Bengal, India

2 − +91 33 2443 8127/8128; +91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

ANX-8

No. 2022-23/EEPL/MON/SC/225

29.11.2022

NOISE LEVEL MONITORING REPORT

Name of Industry	M/s. Scania Steels & Powers Ltd.	
	(Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)	
Address:	22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011	
Date of Monitoring	16.11.2022	

MONITORING REPORT

Sl. No.	Location	Noise Level in L _{eq} dB (A)
1.	In between DRI plant 1&2 and 3&4	60.5 - 74.3
2.	Near ADM Building	56.3 - 65.0
3.	Near Main Gate	55.4 - 67.3
4.	Near DRI Control Room	62.1 - 70.5
5.	Samaruma Village	54.3 - 65.5
6.	Panjipatra Village	56.9 - 67.7
7.	Parkipahari Village	53.5 - 62.2
8.	Near Raw Material Area	64.3 - 72.7
	STANDARD	75 dB (A)

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata − 700 107, West Bengal, India

2 − +91 33 2443 8127/8128; +91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

ANX-8

27.12.2022

NOISE LEVEL MONITORING REPORT

Name of Industry	M/s. Scania Steels & Powers Ltd.	
	(Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)	
Address:	22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011	
Date of Monitoring	14.12.2022	

MONITORING REPORT

Sl. No.	Location	Noise Level in L _{eq} dB (A)
1.	In between DRI plant 1&2 and 3&4	63.7 - 71.2
2.	Near ADM Building	55.6 - 62.5
3.	Near Main Gate	58.1 - 64.8
4.	Near DRI Control Room	65.6 - 72.1
5.	Samaruma Village	55.8 - 62.9
6.	Panjipatra Village	58.9 - 69.2
7.	Parkipahari Village	56.1 - 65.5
8.	Near Raw Material Area	60.8 - 74.1
	STANDARD	75 dB (A)

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

ANX-8 24.01.2023

No. 2022-23/EEPL/MON/SC/242

NOISE LEVEL MONITORING REPORT

Name of Industry	M/s. Scania Steels & Powers Ltd.	
	(Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)	
Address:	22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011	
Date of Monitoring	10.01.2023	

MONITORING REPORT

Sl. No.	Location	Noise Level in L _{eq} dB (A)
1.	In between DRI plant 1&2 and 3&4	64.4 - 75.6
2.	Near ADM Building	57.0 - 64.2
3.	Near Main Gate	57.4 - 65.0
4.	Near DRI Control Room	67.7 - 76.3
5.	Samaruma Village	56.3 - 64.4
6.	Panjipatra Village	56.5 - 66.9
7.	Parkipahari Village	53.5 - 63.45
8.	Near Raw Material Area	63.5 - 71.8
	STANDARD	75 dB (A)

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB

• Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata − 700 107, West Bengal, India

2 − +91 33 2443 8127/8128; +91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

No. 2022-23/EEPL/MON/SC/250

ANX-8 28.02.2023

Name of Industry	M/s. Scania Steels & Powers Ltd.	
	(Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)	
Address:	22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011	
Date of Monitoring	14.02.2023	

MONITORING REPORT

Sl. No.	Location	Noise Level in L _{eq} dB (A)
1.	In between DRI plant 1&2 and 3&4	66.5 - 73.2
2.	Near ADM Building	55.8 - 65.3
3.	Near Main Gate	56.2 - 63.5
4.	Near DRI Control Room	65.1 - 70.9
5.	Samaruma Village	54.2 - 61.7
6.	Panjipatra Village	55.3 - 64.3
7.	Parkipahari Village	56.8 - 66.1
8.	Near Raw Material Area	64.2 - 73.7
	STANDARD	75 dB (A)

For ENVIROTECH EAST (P) LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Company

- Laboratory Recognized by MoEF&CC, Govt. of India Laboratory Recognized by WBPCB
- Accredited EIA Consultant by QCI-NABET

100, Kalikapur, Madurdaha, Kolkata – 700 107, West Bengal, India

2 − +91 33 2443 8127/8128; +91 33 4063 5011; email: eeplkol@gmail.com; eeplkol2@gmail.com
CIN NO: U74210WB1989PTC047403

No. 2022-23/EEPL/MON/SC/257

23.03.2023

ANX-8

NOISE LEVEL MONITORING REPORT

Name of Industry	M/s. Scania Steels & Powers Ltd.	
	(Formerly Known as Sidhi Vinayak Sponge Iron Pvt. Ltd.)	
Address:	22 KM Stone Gharghoda Road, Vill: Punjipatra, Raigarh, Pin: 496 011	
Date of Monitoring	11.03.2023	

MONITORING REPORT

Sl. No.	Location	Noise Level in L _{eq} dB (A)
1.	In between DRI plant 1&2 and 3&4	63.8 - 70.5
2.	Near ADM Building	57.3 - 66.4
3.	Near Main Gate	59.4 - 67.1
4.	Near DRI Control Room	65.1 - 70.9
5.	Samaruma Village	55.7 - 64.4
6.	Panjipatra Village	58.1 - 67.9
7.	Parkipahari Village	54.2 - 63.6
8.	Near Raw Material Area	65.6 - 72.2
	STANDARD	75 dB (A)

For ENVIROTECH EAST (P) LTD.

ANNEXURE-9

ADVERTISEMENT ON LOCAL NEWSPAPERS FOR EC

ADVERTISEMENT ON LOCAL NEWSPAPERS FOR EC

आम सूचना

सर्व साधारण को सूचित किया जाता है कि भारत सरकार पर्यावरण वन एवं जलवायु परिवर्तन मंत्रालय नई दिल्ली के द्वारा पत्र क्रमांक J110011/1267/2007-IA.II(I) दिनांक 07 अगस्त 2018 के द्वारा हमारे प्लांट मेसर्स स्केनिया स्टील एंड पावर लिमिटेड, रायगढ़ इंटिग्रेटेड स्टील प्लांट केप्टीव पाँवर प्लांट (स्पंज ऑयरन प्लांट 200 टी.पी.डी. स्टील मेल्टींग शाँप-135000 टी.पी.ए. एवं वेस्ट हीट रिकव्हरी बाँयलर -8 मेगावाँट) को क्षमता विस्तार के तहत पर्यावरणीय स्वीकृति जारी की गई है, जो कि पर्यावरण वन एवं जलवायु परिवर्तन मंत्रालय के वेबसाईट में http://envfor.nic.in भी उपलब्ध है एवं छत्तीसगढ़ पर्यावरण संरक्षण मंडल में उपलब्ध है।

मे.स्केनिया स्टील एंड पावर लिमिटेड

22 कि.मी.स्टोन घरघोड़ा रोड, पूंजीपथरा जिला-रायगढ़ (छ.ग.)496011 ह्य क्रो स्थान में जगह बनाने अपनी

आम सूचना

सर्व साधारण को सूचित किया जाता है कि भारत सरकार पर्यावरण वन एवं जलवायु परिवर्तन मंत्रालय नई दिखी के द्वारा पन्न क्रमांक के 11011/1267/2007-IA.II(I) दिनांक 07 अगस्त 2018 के द्वारा हमारे प्लाट मेसमें स्केनिया स्टील एंड पॉवर लिमिटेड, रायगढ़ इंटिग्रेटेड स्टील प्लाट केप्टीव पॉवर प्लाट (स्पंज ऑयरन प्लांट 200 टी.पी.डी. स्टील मेल्टींग शॉप-135000 टी.पी.ए एवं वेस्ट हीट रिकव्हरी बॉयलर -8 मेगावॉट) को क्षमता विस्तार के तहत् प्रयावरणीय स्वीकृति जारी की गई है, जो कि पर्यावरण वन एवं जलवायु परिवर्तन मंत्रालय के वेबसाईट http://envfor.nic.in में भी उपलब्ध है एवं छत्तीसगढ़ पर्यावरण संरक्षण मंडल में उपलब्ध है।

मे. रकेनिया रहील एंड पावर लिगिटेड

22 कि.मी. स्टोन घरघोड़ा रोड, पूंजीपथरा जिला-रायगढ़ (छ.ग.) 496011

में या विश्वीति पूजित के लिंगे

छत्तीसगढ़ पर्यावरण संरक्षण मंडल, रायपुर

CHHATTISGARH ENVIRONMENT CONSERVATION BOARD, RAIPUR

Commercial Complex, Housing Board Colony, Kabir Nagar, Raipur – 492 099 E-mail:hocecb@gmail.com, Ph.-0771-2970070, Fax- 0771-2970074

No4398 /HO/HSMD/CECB/2018

Naya Raipur, Date 23/8/2018

To,

M/s Scania Steels and Powers Limited, Village-Punjipatra, Gharghoda Road, P.O.-Ruma Suma, Distt. - Raigarh (C.G.)

Sub:-

Grant of authorization under the Hazardous and Other Wastes (Management & Transboundary Movement) Rules, 2016.

Ref:-

Your Online application no. 735974 dated 31/03/2018 & Subsequent correspondence ending dated 30/06/2018.

---:00:----

The authorization under the Hazardous and Other Wastes (Management & Transboundary Movement) Rules, 2016 is hereby granted for **Five Year** from date of issue of this letter. The terms & conditions of the authorization are given in the enclosed authorization letter.

Please acknowledge the receipt of this letter.

Encl:-As above

C.G. Environment Conservation Board

Naya Raipur (C.G.)

Endt. No. /H.O./HSMD/CECB/2018 Copy to :- Naya Raipur, Date / /2018

- 1. HSMD Section, Chhatisgarh Environment Conservation Board, H.O. Naya Raipur (C.G.).
- 2. Regional Officer, Regional office, Chhattisgarh Environment Conservation Board, Raigarh (C.G.) please ensure compliance and report, if any condition/conditions are violated by the industry.

Member Secretary
C.G. Environment Conservation Board
Naya Raipur (C.G.)

FORM 2 [See rule 6 (2)]

FOR GRANT OF AUTHORISATION BY STATE POLLUTION CONTROL BOARD TO THE OCCUPIERS, RECYCLERS, REPROCESORS, REUSERS, USER AND OPERATORS OF DISPOSAL FACILITEIS

1. Number of authorization 252.HO/HSMD/CECB/RAIPUR and date of issue. 23/08/2018

2. Reference of Online application no. 735974 dated 31/03/2018 & Subsequent correspondence

ending dated 30/06/2018.

The operator of facility i.e. occupier M/s Scania Steels and Powers Limited, Village-Punjipatra, Gharghoda Road, P.O.-Ruma Suma, Distt. - Raigarh (C.G.) is hereby granted an authorization based on the enclosed signed inspection report for generation, collection, storage, transport & disposal of hazardous wastes in the primises situated at Village-Punjipatra, Gharghoda Road, P.O.-Ruma Suma, Distt. - Raigarh (C.G.).

Detail of Authorisation

S.No.	Category of Hazardous Waste as per the Schedules I, II and III of these rules	Authorised mode of disposal or recycling or utilization or co- processing etc.	Quantity (Tonnes/Annum)
1.	Used or spent oil (Schedule-I, Cat.No 5.1)	To be sold to authorized recyclers	5.0 Kl/Year

(1) The authorization shall be valid for a period of Five Year from date of issue of this letter.

(2) The authorization is subject to the following conditions.

TERMS & CONDITIONS OF AUTHORIZATION

- 1. The person authorised shall comply with the provisions of Environment (protection) Act, 1986 and the rules made there-under.
- 2. The authorization or its renewal shall be produced for inspection at the request of an officer authorized by the Chhattisgarh Environment Conservation Board.
- 3. The person authorised shall not rent, lend, sell transfer or otherwise transport the hazardous wastes without obtaining prior permission of the Chhattisgarh Environment Conservation Board.
- 4. Any unauthorized change in personnel, equipment, or working conditions as mentioned in the application by the person authorized shall constitute a breach of his authorization.
- 5. The person authorised shall implement Emergency Response Procedure (ERP) for which this authorisation is being granted considering all site specific possible scenarios such as spillages, leakages, fire etc. and their possible impacts and also carry out mock drill in this regard at regular interval of time.
- 6. The person authorised shall comply with the provisions outlined in the Central Pollution Control Board guidelines on "Implementing Liabilities for Environmental Damages due to Handling and Disposal of Hazardous Waste and Penalty".
- 7. It is the duty of the authorized person to take prior permission of the Chhattisgarh Environment Conservation Board to close down the facility.

छत्तीसगढ़ पर्यावरण संरक्षण मंडल, रायपुर CHHATTISGARH ENVIRONMENT CONSERVATION BOARD, RAIPUR

Commercial Complex, Housing Board Colony, Kabir Nagar, Raipur – 492 099 E-mail:hocecb@gmail.com, Ph.-0771-2970070, Fax- 0771-2970074

- 8. Industry shall prepare emergency response plan (ERP) and ensure implementation the same at the event of any accident occurs due to handling and transporting of hazardous waste as per CPCB guideline.
- 9. The hazardous and other waste which gets generated during recycling or reuse or recovery or pre-processing or utilisation of imported hazardous or other wastes shall be treated and disposed of as per standard operating procedures/guidelines issued by CPCB from time to time.
- 10. An application for the renewal of an authorisation shall be made three months before the expiry of authorization as laid down in the Rules.
- 11. Annual return in form IV shall be filed by June 30th for the period ending 31st March of the last financial year.
- 12. The wastes shall be collected and stored properly with adequate safety measures as per rule.
- 13. Person authorised shall comply with the provisions of rule 17, 18 and 19 for packing, labeling and transport of Hazardous Waste.
- 14. The person authorised should maintain the record of Hazardous Waste as per Form-3 of Hazardous and Other Wastes (Management & Transboundary Movement) Rules, 2016.
- 15. The occupier shall follow the guidelines (if any) issued by Central Pollution Control Board or MoEF & CC for management of Hazardous waste from time to time.
- 16. The industry shall display data out side factory gate on quantity and nature of hazardous chemicals and wastes being used in the plant, water and air emissions and solid wastes generated within the factory premises.
- 17. Industry shall ensure disposal of hazardous waste through authorized recycler/co-processing in cement plant/captive disposal facility/arrangement for sharing of authorized disposal facility/common TSDF as per rule. Failing which this authorization shall be treated as cancelled and appropriate action would be initiated against the industry.
- 18. The waste must be given thermal/biological/physico-chemical treatment. The waste should be completely dewatered, detoxified, and proper conditioned and any possible recovery is made before their disposal.
- 19. The industry should constitute a hazardous waste management cell to take care of the management aspect to the hazardous waste generated in the plant.
- 20. An on-site storage of the hazardous wastes for a maximum period of 90 days should be provided and it shall be ensured that there is no leakage or seepage from the surrounding walls or bottom. The site should be covered and properly protected to prevent the entry of rain water in storage area.
- 21. At least four nos. of peizometric points should be provided around the storage site of H.W. to monitor the leaching of the waste. Each type of waste shall be stored in a separate storage cell.
- 22. The discarded containers of Hazardous waste and chemical shall not be used for storage of food grade products. At the storage site "Hazardous waste storage site & danger signboard" shall be provided with all safety devices.

- 23. In the event of any accident due to handling of hazardous waste the person authorised must inform immediately to the Concerned Regional Office and H.O., Naya Raipur of the Board by fax/telephone or by E-mail about the incident and details report be sent in form no. 11 [see rule 22].
- 24. The authorization obtained by the Chhattisgarh Environment Conservation Board should be prominently displayed.
- 25. Used batteries shall be disposed of as per the Batteries (Management & Handling) Rules, 2001.
- 26. Board reserves the right to cancel/amend the above condition and add new conditions as and when deemed necessary.

Member Secretary

C.G. Environment Conservation Board

Naya Raipur (C.G.)

Public Liability (Act) Insurance Policy [UIN:IRDAN123CP0072V01201819] THIS IS CLAIMS MADE BASIS POLICY - READ IT CAREFULLY

ANNEXURE-11

CHOLAMANDALAM MS GENERAL INSURANCE COMPANY Ltd. ADDRESS: RAIPUR BRANCH OFFICE WARD NO - 25 (GRU GOVIND SINGH WARD), 2ND FLOOR, SIMRAN TOWERS, PANDRI ROAD, OPP - LIC BUIDING, RAIPUR H.O CITY: RAIPUR STATE: CHATTISGARH GSTIN: 22AABCC6633K1ZT		GST Invoice No.:3120305944339 DATE: 15/04/2021 PAN: AABCC6633K SAC Code: 997139 SAC Description: Other non-life insurance services (excluding reinsurance services)	
Delian I	IPUR BRANCH OFFICE	Broker / Agent : 2005254796100001	
Policy Number : 3120	//00000365/000/00	Customer Code : 100447619131	

Name of Insured	SCANIA STEELS AND POWERS LTD	
Address of Insured	22 Km Milestone,Ghargoda Road, Punjipathra Raigarh H.O, Raigarh Chattisgarh PIN-496001 GST No.: 22AAHCS4471R1ZT	
Aadhar No.	-	
PAN No.	AAHCS4471R	
Policy Period	From 13/04/2021 00:00 Hours to Midnight Hours 23:59 on 12/04/2022	
Premium Receipt	1025060241, Date : 13/04/2021	
Business/ Profession	Sponge iron manufacturing unit	
Policy Basis	CLAIMS MADE BASIS	
Limit of Indeminity	AOY INR 15,00,00,000.00	
	AOA INR 5,00,00,000,00	
Risk Location	1. As Mentioned In Condition	
Turnover	INR 2 68 48 28 283 00	
Specific Terms and Conditions	2. 1. Notwithstanding any provision to the contrary, the policy/insurance excludes any loss, damage, liability, expense, fines, penalties or any other amount directly or indirectly causedby, in connection with, or in any way involving or carrising out of any of the following including any fear or threat hereof, any action taken or failure to take action in controlling, preventing, suppressing on any way responding to such whether actual/alleged/threat or perceived of: a) (COVID-19) including any mutation of variation thereof; or, c) Pandemic or epidemic, as declared as such by the World Health Organization or any governmentateumority. If the insurer alleges that, by reason of this exclusion, any amount is not covered by this policy/insurance, he buffen of proving the contrary shall rest on the issured. 3. Location Address, 22 KM MILESTONE CHARGODA ROAD, PO Area - RAIGARH, RAIGARH, CHATTISGARH	
Specific Exclusions		
Deductible	NIL	
Jurisdiction	India	
Territory	lodia lodia	
Retroactive Date	13-04-2028	
Premium(Rs.)	NN 28,440.00	
GGST (9%)	INR 2,559.50	
GGST (9%)	INR 2,559.50	
Gerala Cess (1%)(in Rs.)	INR 0.00	
GST (0%)	INR 0.00	
nvironment Relief Fund	INR 28,440.00	
mount Payable	INR 61,999.00	

IN WITNESS WHEREOF, the Insurer has caused this Policy to be executed and attested

Intermedia w Name Intermedia	26,Commercial Taxes and Registration (j1) Department, Tamil Nadu dated 21/12/2020.		
intermediary Name: IRM INSUR	ANCE BROKERS PRIVATE LIMITED	POSP Name	
Code: 200525479610	Contact No: 9826175646		
Note: The Certificate of Insurance / the details and ensure that everythin of policy.	Policy Schedule is an important document issued based on your dog is in order. In case of any discrepancies, please contact us within	eclaration. We request you to verify n 15 days from the date of issuance	
Place : Chennai	For Cholamandalam MS General Insurance Company Ltd		
		Signature valid Digitally signed by: KANCHINER M SRIDHARI ARISH	
Date : 15-04-2021		Authorised Signator	
	Regd.&Head Office:Dare House, 2nd Floor, No.2, N.S.C Bose Road, Chennai-600 001, India CIN: U66030TN2001PLC047977 IRDAI Reg. No. 123		